https://doi.org/10.35336/VA-1210

https://elibrary.ru/FUEXZU

МЕХАНИЧЕСКАЯ ДИСПЕРСИЯ ЛЕВОГО ЖЕЛУДОЧКА - НОВЫЙ УНИВЕРСАЛЬНЫЙ МАРКЕР ЗЛОКАЧЕСТВЕННЫХ ЖЕЛУДОЧКОВЫХ ТАХИАРИТМИЙ У ПАЦИЕНТОВ СО СТРУКТУРНОЙ ПАТОЛОГИЕЙ СЕРДЦА

Е.В.Гусева, Н.Б.Шлевков, Г.С.Тарасовский, В.Н.Шитов, Х.Ф.Салами, В.Г.Киктев, М.А.Саидова ФГБУ «Национальный медицинский исследовательский центр кардиологии им. ак. Е.И.Чазова» МЗ РФ, Российская Федерация, г. Москва, ул.Академика Чазова, д. 15а.

Цель. Изучить возможности использования параметров глобальной и сегментарной продольной деформации левого желудочка (ЛЖ), а также механической дисперсии (МД) ЛЖ для прогнозирования злокачественных желудочковых тахиаритмий (ЗЖТ) у пациентов со структурной патологией сердца и различной степенью снижения сократительной функции ЛЖ.

Материал и методы исследования. В исследование включено 113 пациентов с фракцией выброса (ФВ) ЛЖ≤50% на фоне структурной патологии сердца, имеющие имплантированные устройства (кардиовертер-дефибриллятор, сердечная ресинхронизирующая терапия с функцией дефибриллятора, электрокардиостимулятор), либо документированные устойчивые пароксизмы ЗЖТ. Всем пациентам проводилась трансторакальная эхокардиография с оценкой стандартных показателей и параметров спекл-трекинг эхокардиографии (глобальная и сегментарная продольная деформация ЛЖ, МД ЛЖ). Сравнительный однофакторный и ROC-анализы изучаемых параметров между пациентами с наличием и отсутствием ЗЖТ проводился отдельно для пациентов со значениями ФВ ЛЖ≤35% (n=60) и ФВЛЖ 36-50% (n=53).

Результаты. Группа пациентов с ФВ ЛЖ \leq 35%, имеющих ЗЖТ (n=30), характеризовалась более низкими значениями продольной деформации базального сегмента межжелудочковой перегородки ЛЖ (-5[-6,5;-0,5] и -6,8[-11;-4.4], соответственно, p=0,01) и среднего сегмента нижней стенки ЛЖ (-3[-6;2] и-6[-9;-1,5], соответственно, p=0,04). Группа пациентов с ФВ ЛЖ 36-50%, имеющих ЗЖТ (n=33), отличалась большим значением конечно-диастолического объёма ЛЖ (166,5[146,3;193] и 156[133,8;165,5], соответственно, p=0,04). Большие значения МД ЛЖ были ассоциированы с наличием ЗЖТ в обеих группах пациентов (p<0,002) и являлись наиболее ценными диагностическими признаками по данным ROC-анализа. Для пациентов с ФВ ЛЖ≤35% оптимальным отрезным значением МД ЛЖ являлось 120 мс (площадь под ROC-кривой 0,817, чувствительность - 73,3%, специфичность - 80%), для пациентов с ФВ ЛЖ 36-50% - 90 мс (площадь под ROC-кривой 0,761, чувствительность - 72,7%, специфичность - 75%).

Выводы. Полученные результаты указывают на перспективность оценки параметров спекл-трекинг эхокардиографии в качестве дополнительных маркеров повышенного риска ЗЖТ у пациентов со сниженной и промежуточной ФВ ЛЖ на фоне структурной патологии сердца. МД ЛЖ является единственным универсальным эхокардиографическим признаком, который может быть использован для стратификации риска возникновения ЗЖТ в обеих группах пациентов.

Ключевые слова: спекл-трекинг эхокардиография; механическая дисперсия; продольная деформация; желудочковая тахикардия, фибрилляция желудочков; внезапная сердечная смерть

Конфликт интересов: отсутствует.

Финансирование: отсутствует.

Рукопись получена: 11.05.2023 Исправленная версия получена: 24.06.2023 Принята к публикации: 20.07.2023

Ответственный за переписку: Гусева Елена Владиславовна, E-mail: gev1994@list.ru

Данная научная работа представлена в рамках конкурса молодых ученых X Всероссийского съезда аритмологов, проводимого 8-10 июня 2023 года в Москве.

Е.В.Гусева - ORCID ID 0000-0001-6500-3649, Н.Б.Шлевков - ORCID ID 0000-0003-3956-1860, Г.С.Тарасовский - ORCID ID 0000-0002-2143-8912, В.Н.Шитов - ORCID ID 0000-0002-8878-7340, Х.Ф.Салами - ORCID ID 0000-0001-9751-7767, В.Г.Киктев - ORCID ID 0000-0002-2628-3796, М.А.Саидова - ORCID ID 0000-0002-3233-1862

Для цитирования: Гусева ЕВ, Шлевков НБ, Тарасовский ГС, Шитов ВН, Салами ХФ, Киктев ВГ, Саидова МА. Механическая дисперсия левого желудочка - новый универсальный маркер злокачественных желудочковых тахиаритмий у пациентов со структурной патологией сердца. *Вестник аритмологии*. 2023;30(4): 32-41. https://doi.org/10.35336/VA-1210.

LEFT VENTRICLE MECHANICAL DISPERSION IS A NEW UNIVERSAL MARKER OF MALIGNANT VENTRICULAR TACHYARRHYTHMIAS IN PATIENTS WITH STRUCTURAL HEART DISEASE

E.V.Guseva, N.B.Shlevkov, G.S.Tarasovskiy, V.N.Shitov, H.F.Salami, V.G.Kiktev, M.A.Saidova FSBI National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, 15a Akademika Chazova str., Moscow, Russia

Aim. To evaluate the possibility to use parameters of global, segmental longitudinal left ventricle (LV) strain and LV mechanical dispersion (MD) as new possible markers of malignant ventricular tachyarrhythmias (MVT) in patients with structural heart disease and reduced and intermediate LV ejection fraction (EF).

Methods. The study included 113 patients (105 male, age 66 [59;73] year) with ischemic (n=89) or non-ischemic (n=24) dilated cardiomyopathy and LVEF<50%, implanted cardioverter-defibrillators, cardiac resynchronization therapy devices-defibrillators, pacemakers or documented MVT. All patients underwent transthoracic echocardiography with an assessment of speckle-tracking echocardiography parameters (global and segmental longitudinal LV strain, LV MD). Comparative univariate and ROC-analyses were performed between patients with and without MVT separately for patients with LVEF <35% (n=60) and LVEF 36-50% (n=53) LVEF.

Results. The group of patients with LVEF \leq 35% with MVT (n=30) was characterized by lower values of longitudinal strain of the basal segment of the LV septum wall (-5[-6,5;-0,5] vs -6,8[-11;-4.4], p=0,01, respectively) and the middle segment of the LV inferior wall (-3[-6;2] vs -6[-9;-1,5], p=0,04, respectively). The group of patients with LVEF 36-50% with MVT (n=33) was distinguished by a large value of LV end-diastolic volume (166,5[146,3;193] vs 156[133,8;165,5], p=0,04, respectively). The greater values of LV MD were noted in both groups of patients with MVT. The optimal cut-off value of LV MD was 120 ms (area under the ROC curve 0.817, sensitivity-73,3%, specificity-80%) for patients with LVEF \leq 35%, and 90 ms (area under the ROC curve 0.761, sensitivity-72.7%, specificity-75%) for patients with LVEF 36-50%.

Conclusion. Speckle-tracking echocardiography parameters may serve as additional markers of increased risk of MVT in patients with structural heart disease and impaired LVEF. Only LV MD is useful for risk stratification of MVT in patients with either reduced or intermediate LVEF.

Key words: speckle-tracking echocardiography; mechanical dispersion; longitudinal strain; ventricular tachycardia; ventricular fibrillation; sudden cardiac death

Conflict of interest: none.

Funding: none.

Received: 11.05.2023 Revision received: 24.06.2023 Accepted: 20.07.2023

Corresponding author: Elena Guseva, E-mail: gev1994@list.ru

This work was presented as part of the competition for young scientists of the X All-Russian Congress of Arrhythmologists, held on June 8-10, 2023 in Moscow.

E.V.Guseva - ORCID ID 0000-0001-6500-3649, N.B.Shlevkov - ORCID ID 0000-0003-3956-1860, G.S.Tarasovskiy - ORCID ID 0000-0002-2143-8912, V.N.Shitov - ORCID ID 0000-0002-8878-7340, H.F.Salami - ORCID ID 0000-0001-9751-7767, V.G.Kiktev - ORCID ID 0000-0002-2628-3796, M.A.Saidova - ORCID ID 0000-0002-3233-1862

For citation: Guseva EV, Shlevkov NB, Tarasovskiy GS, Shitov VN, Salami HF, Kiktev VG, Saidova MA. Left ventricle mechanical dispersion is a new universal marker of malignant ventricular tachyarrhythmias in patients with structural heart disease. *Journal of Arrhythmology.* 2023;30(4): 32-41. https://doi.org/10.35336/VA-1210.

Пароксизмальная желудочковая тахикардия (ЖТ) и фибрилляция желудочков, возникающие на фоне структурного поражения миокарда, сопряжены с крайне высоким риском внезапной сердечной смерти (ВСС) и потому нередко именуются «злокачественными» желудочковыми тахиаритмиями (ЗЖТ) [1]. Современные способы стратификации риска ВСС у пациентов со структурным поражением миокарда, опирающиеся преимущественно на значения фракции выброса (ФВ) левого желудочка (ЛЖ), не позволяют точно прогнозировать вероятность возникновения ЗЖТ [2]. Следствием не высоких чувствительности и специфичности используемых критериев является то, что более половины пациентов с имплантированными с целью первичной профилактики ВСС кардиовертерами-дефибриллято-

рами не имеют ни одного срабатывания устройства в течение всего срока его службы, в то время как, напротив, большинство случаев ЗЖТ и ВСС регистрируются у лиц с незначительно сниженной ФВ ЛЖ - от 36% до 50%. Всё это требует продолжение поиска более точных маркеров повышенного риска ЗЖТ и ВСС. Особый интерес в этом отношении представляет изучение показателей спекл-трекинг эхокардиографии (СТ ЭхоКГ), способной оценивать сегментарную деформацию и гетерогенность сокращения миокарда, преобразовывая полученные данные в численные значения, благодаря чему стала возможной более точная и подробная оценка сократительной способности миокарда.

Целью исследования явилось изучение возможности использования параметров глобальной и сегментар-

ной продольной деформации ЛЖ, а также механической дисперсии (МД) ЛЖ для прогнозирования ЗЖТ у пациентов со структурной патологией сердца и различной степенью снижения сократительной функции ЛЖ.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Исследование было выполнено в соответствии с этическими положениями Хельсинкской декларации и Национальным стандартом Российской Федерации - «Надлежащая клиническая практика Good Clinical Practice» на базе Национального медицинского исследовательского центра кардиологии им. академика Е.И. Чазова в 2020-2023 гг. и было одобрено локальным этическим комитетом. В исследование включались пациенты, подписавшие добровольное информированное согласие и соответствовавшие критериям включения: возраст с 18 до 85 лет, наличие структурного поражения миокарда ишемического (постинфарктный кардиосклероз, ишемическая кардиомиопатия), неишемического (дилатационная кардиомиопатия или «гипертоническое сердце» в стадии декомпенсации) либо смешанного генеза, снижение сократительной функции ЛЖ (значения ФВ ЛЖ менее 50% по ЭхоКГ), наличие имплантированного устройства (имплантированный кардиовертер-дефибриллятор, устройство для сердечной ресинхронизирующей терапии с функцией

дефибриллятора, электрокардиостимулятор), позволявшего оценивать наличие либо отсутствие ЗЖТ в течение двух и более лет. В исследование также включались пациенты без имплантированных устройств с наличием спонтанных или/и индуцированных при внутрисердечном электрофизиологическом исследовании устойчивых ЗЖТ при условии их соответствия остальным критериям включения в исследование.

Величина ФВ ЛЖ оценивалась при включении в исследование, но не ранее, чем через 40 дней после острого инфаркта миокарда и через 3 месяца после выполненной реваскуляризации и/или назначения оптимальной медикаментозной терапии хронической сердечной недостаточности (ХСН) согласно клиническим рекомендациям [3]. За наличие ЗЖТ принимались зарегистрированные при электрокардиографии (ЭКГ) или/и при проверке имплантированных устройств пароксизмы устойчивой (длительностью более 30 секунд, если не потребовалось более раннее купирование аритмии) желудочковой тахиаритмии (мономорфной ЖТ, полиморфной ЖТ, трепетания или фибрилляции желудочков), которые имели место вне действия преходящих / корригируемых состояний, таких как острый инфаркт миокарда, электролитные нарушения, острая ишемия, тиреотоксикоз, аритмогенное действие антиаритмических препаратов и других. Критерием отсутствия ЗЖТ у пациентов без имплантированных

устройств являлось невозможность индукции любых устойчивых ЗЖТ при проведении стандартного протокола эндокардиальной стимуляции желудочков при внутрисердечном электрофизиологическом исследовании. Оценка наличия либо отсутствия ЗЖТ у пациентов с имплантированными устройствами проводился очно при помощи регулярной (не менее 1 раза в 6 месяцев) проверки устройств, либо заочно с использованием системы удалённого мониторирования устройств.

В исследования не включались пациенты с наличием острой соматической патологии, включая пациентов с нарушением функции щитовидной железы (гипертиреоз), с нарушением электролитного баланса (гипо- или гиперкалиемия), с декомпенсацией хронических заболеваний, в том числе с острой декомпенсацией ХСН, с состояниями, требующими выполнения экстренного / срочного хирургического вмешательства, либо с наличием гемодинамически значимого стенозирования коронарных артерий по данным проведенной коронароангиографии и иными состояниями, ограничивающие участие и динамическое наблюдение пациентов в исследовании.

Характеристика исследуемых пациентов

Критериям включения в исследование соответствовали 113 пациентов (105 муж, 8 жен), возраст 66 [59;73] лет, из них у 89 (79%) пациентов была диагностированы постинфарктный кардиоскле-

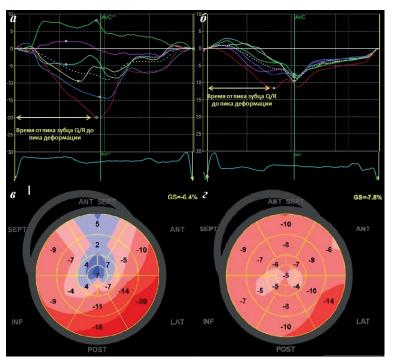


Рис. 1. Расчет показателей спекл-трекинг эхокардиографии у пациентов с наличием и отсутствием злокачественной желудочковой тахикардии (ЗЖТ): время от пика зубца Q/R до пика деформации каждого сегмента левого желудочка (ЛЖ), использующееся в расчете механической дисперсии ЛЖ, у пациента с наличием (а) и отсутствием (б) ЗЖТ; результат расчета глобальной (GS) и сегментарной деформации ЛЖ у пациента с наличием (в) и отсутствием (г) ЗЖТ; изображение «бычьего глаза» отражает продольную деформацию каждого сегмента (зоны сохранной деформации представлены красным цветом, нарушенной деформации - розовым и синими цветами).

роз / ишемическая кардиомиопатия, а у 24 (21%) пациентов - неишемическая кардиомиопатия, в том числе, дилатационная кардиомиопатия у 19 (79%) пациентов и декомпенсированное гипертоническое сердце - у 5 (21%) пациентов.

Эхокардиография

Всем пациентам выполнена стандартная трансторакальная ЭхоКГ и СТ ЭхоКГ на ультразвуковой системе Vivid E9 (General Electric) с ЭКГ-синхронизацией. Определение ФВ ЛЖ производилось по методу Симпсона в режиме биплан. Оценка параметров глобальной продольной деформации ЛЖ, а также сегментарной продольной деформации и механической дисперсии миокарда в 17 сегментах ЛЖ по данным СТ ЭхоКГ проводился на основании анализа двумерных

изображений 3 апикальных проекций - двухкамерной, четырехкамерной и трехкамерной на рабочей станции с использованием программного обеспечения EchoPac version 6.1 (GE Healthcare, США). Оценка продольной деформации позволила получить информацию о механике сокращения субэндокардиальных продольных волокон каждого сегмента миокарда от основания к верхушке. Наилучшая деформация соответствовала наибольшему отрицательному значению, что проиллюстрировано на рис. 1. В отношении данного параметра прилагательные «более» и «менее» будут использованы в соответствии с абсолютными величинами. Глобальная продольная деформация оценивалась как усредненное значение продольной деформации всех сегментов миокарда ЛЖ. За МД ЛЖ принято стандарт-

Таблица 1. Сравнительная характеристика исследуемых групп пациентов в зависимости от ФВ ЛЖ

	ФВ ЛЖ ≤ 35%			ФВ ЛЖ 36-50%		
	Пациенты с ЗЖТ (n=30)	Пациенты без ЗЖТ (n=30)	p	Пациенты с ЗЖТ (n=33)	Пациенты без ЗЖТ (n=20)	p
Возраст, лет	66,0 [61;71]	64 [58;67]	0,35	65 [59;73]	73 [68;85]	0,003
Мужчины, п (%)	30 (100)	28 (93)	0,49	31 (93)	16 (80)	0,18
ИКМП, n (%)	25 (84)	20 (66)	0,24	29 (87)	15 (75)	0,27
ПИКС ПС ЛЖ, п (%)	14 (56)	10 (50)	0,76	14 (48)	6 (40)	0,75
ПИКС НС ЛЖ, п (%)	18 (72)	11 (55)	0,34	17 (58)	8 (53)	0,76
ПИКС БС ЛЖ, п (%)	14 (56)	10 (50)	0,76	13 (44)	8 (53)	0,75
Аневризма ЛЖ, п (%)	11 (44)	7 (35)	0,76	7 (24)	2 (13)	0,7
ДКМП, n (%) /	4 (13)	9 (30)	0,29	2 (6)	4 (20)	0,18
ДГС, n (%)	1 (3)	1 (3)	0,98	2 (6)	1 (5)	1
ФК ХСН по NYHA	2[2;3]	2[2;3]	0,4	2[1;3]	2[1;3]	0,3
Пароксизмальная ФП, п (%)	10 (33)	9 (30)	1	15 (45)	6 (30)	0,39
Постоянная ФП, п (%)	7 (23)	6 (20)	1	3 (9)	5 (25)	0,13
NT-proBNP, нг/мл	1234[660;2499]	1279[591;2748]	0,9	481[201;913]	947[638;1206]	0,03
ТШХ, м	370[280;400]	382[296;407]	0,53	415[382;500]	382[300;521]	0,37
Длительность QRS, мс	144[123;160]	132[119;152]	0,2	120[105;135]	128[113;152]	0,33
Длительность QTc, мс	457[438;506]	446[427;476]	0,54	431[403;468]	440[424;459,5]	0,52
Сахарный диабет 2 типа	6 (20)	3 (10)	0,47	3 (9)	6 (30)	0,07
Бета-блокаторы, п (%)	24 (80)	27 (90)	0,47	25 (76)	18 (90)	0,29
ИАПФ или сартаны, п (%)	28 (93)	30 (100)	0,49	31 (93)	19 (95)	1
Валсартан/сакубитрил, п (%)	27 (90)	29 (97)	0,61	31 (93)	19 (95)	1
AMKP, n (%)	28 (93,3)	27 (90)	0,67	30 (91)	15 (75)	0,13
«Петлевой» диуретик, n (%)	20 (67)	20 (67)	1	13 (39)	9 (45)	0,77
Ингибитор SGLT2, n (%)	22 (73)	24 (80)	0,76	29 (88)	15 (75)	0,27
Соталол, n (%)	-	-		4 (12)	1 (5)	0,63
Амиодарон, п (%)	16 (53)	12 (40)	0,43	17 (52)	3 (15)	0,01

Примечания: здесь и далее ΦB - фракция выброса; ЛЖ - левый желудочек; ЗЖТ - злокачественные желудочковые тахиаритмии; ИКМП - ишемическая кардиомиопатия; ПИКС - постинфарктный кардиосклероз; ПС, НС и БС - передняя, нижняя и боковая стенки, соответственно; ДКМП - дилатационная кардиомиопатия; ДГС - декомпенсированное гипертоническое сердце; ΦK - функциональный класс; XCH - хроническая сердечная недостаточность; NYHA - New York Heart Association; $\Phi \Pi$ - фибрилляция предсердий; NT-proBNP - N-концевой предшественник мозгового натрийуретического пептида; TIIIX - тест шестиминутной ходьбы; $VA\Pi\Phi$ - ингибиторы ангиотензин-превращающего фермента; $VA\Pi\Psi$ - антагонисты минералокортикоидных рецепторов; $VA\Pi\Psi$ - натрий-глюкозного котранспортера 2 типа; данные представлены как медиана и квартили.

ное отклонение от пика зубца Q/R на ЭКГ до пика продольной деформации в каждом из 17 сегментов ЛЖ.

Клинико-инструментальное обследование

У всех пациентов определялись длительность комплекса QRS и интервала QT на основании 12-канальной ЭКГ с расчетом корригированного интервала QT по формуле Базетта при частоте сердечных сокращений (ЧСС) от 60 до 80 уд/мин или по формуле Фреймингема при иных значениях с ЧСС. Тест 6-минутной ходьбы был проведен пациентам для оценки функционального класса ХСН по классификации Нью-Йоркской ассоциации сердца (NYHA). Концентрация N-терминального пропептида натрийуретического гормона (NT-proBNP) определялась в сыворотке крови на автоматическом электрохемилюминецентном анализаторе Cobas e 411 Roche HITACHI (Япония) с набором proBNP II (Cobas Roche Diagnostics, Германия).

Статистический анализ

Расчет производился с использованием программ Statistica 12.0 (StatSoft) и SPSS 26.0 (Norman Nie, Hadlai Hull & Dale Bent, IBM). Непрерывные исследуемые признаки обозначали как медианы и интерквартильный размах - медиана (25-75 перцентили), дискретные признаки - в качестве долей, обозначаемых процентами. Количество случаев в группах обозначали как «n». Для однофакторного анализа признаков использовали непараметрические методы: U-тест Манна-Уитни для сравнения непрерывных величин и точный двусторонний тест Фишера для сравнения дискретных величин. Для сопоставления диагностической ценности показателей, продемонстрировавших статистически значимые различия между группами (значение p<0,05), применяли ROC-анализ (Receiver Operating Characteristic) с помощью построения характеристических кривых зависимости чувствительности и специфичности исследуемых признаков.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

На основании текущих клинический рекомендаций по имплантации устройств с функцией дефибриллятора по профилактике ВСС у пациентов со структурной патологией сердца [2] все пациенты были

разделены на 2 группы наблюдения: пациенты со значениями ФВ ЛЖ \leq 35% (n=60) и больные со значениями ФВ ЛЖ \geq 35% (n=53). По результатам наблюдения, половина больных группы пациентов с ФВ ЛЖ \leq 35% имели ЗЖТ (n=30), а остальные 30 пациентов не имели ни единого эпизода ЗЖТ по данным проверки параметров работы устройств. У 33 (62%) пациентов, имевших структурную патологию сердца со снижением ФВ ЛЖ от 36 до 50%, были зарегистрированы устойчивые пароксизмы ЗЖТ, тогда как у 20 пациентов (38%) ЗЖТ отсутствовала. Основные клинические характеристики исследуемых групп представлены в табл. 1.

Группа пациентов с ФВ ЛЖ менее или равной 35%

В исследуемой группе у 45 (75%) пациентов снижение ФВ ЛЖ было результатом перенесенного инфаркта миокарда, дилатационная кардиомиопатия как причина была выявлена у 13 (21,7%) пациентов, в то время как декомпенсированное гипертоническое сердце было выявлено у 4 пациентов (3,3%). Как видно из табл. 1 обе подгруппы были сопоставимы по степени выраженности XCH (I-III функционального класса по NYHA), как по данным теста 6-минутной ходьбы, так и по уровню биомаркера NT-proBNP. Проведенный однофакторный анализ длительности комплекса QRS и интервала QTc также не показал статистически достоверного различия. Широко применяемые ЭхоКГ показатели, такие как ФВ ЛЖ, конечно-диастолический объем, конечно-систолический объем, давление в легочной артерии, показатели диастолической дисфункции миокарда ЛЖ были сопоставимы в обеих группах, что представлено в табл. 2.

При оценке параметров СТ ЭхоКГ также не было получено статистически значимой разницы показателя глобальной продольной сократимости ЛЖ (табл. 3). Однако, при однофакторном анализе сегментарной продольной деформации было выявлено, что у пациентов с ЗЖТ статистически ниже значения продольной деформации среднего сегмента нижней стенки ЛЖ (-3[-6;2] и -6[-9;-1,5], соответственно, р=0,04), базального сегмента передне-перегородной стенки ЛЖ (-3[-6;2] и -6,5[-9,8;-3,3], соответственно, р=0,03)

Таблица 2. Данные трансторакальной эхокардиографии в группах пациентов в зависимости от ФВ ЛЖ

	ФВ ЛЖ ≤ 35%			ФВ ЛЖ 36-50%		
	Пациенты с 3ЖТ (n=30)	Пациенты без ЗЖТ (n=30)	P	Пациенты с 3ЖТ (n=33)	Пациенты без ЗЖТ (n=20)	P
ФВ ЛЖ, %	29,5[27;32,8]	27[25;32,3]	0,35	40[38;44]	43[37,8;45,3]	0,58
КДО ЛЖ, мл	251,0[210;298,8]	237,5[192,8;283]	0,45	166,5[146,3;193]	156[133,8;165,5]	0,04
КСО ЛЖ, мл	191,0[158,3;240]	172,0[140;205]	0,59	100[80;110,8]	84[64,5;102]	0,06
СДЛА, мм рт.ст.	44,5[30;55]	40[29;48]	0,2	32[25;39,5]	30,5[30;39,5]	0,57
Е	70[54,5;80,5]	68[46,5;89,25]	0,8	60[43,5;69]	64,5[45,3;83,3]	0,38
a	64,5[60;81,3]	53[33;76,5]	0,19	73[56;80,5]	48[39;81]	0,18
E/a	0,9[0,6;1,2]	1[0,6;2,5]	0,34	0,8[0,6;1,1]	1,3[0,6; 2,1]	0,18
E/e'	11,7[8,1;19,4]	13[9;16,3]	0,72	8[6,6;11,3]	7[6;8,5]	0,93

Примечания: здесь и далее КДО - конечно-диастолический объем; КСО - конечно-систолический объем; СДЛА - систолическое давление в легочной артерии, ФВ - фракция выброса.

и базального сегмента задне-перегородночной стенки (-6[-8;-3] и -8[-11;-5,3], соответственно, р=0,01). Кроме того, было проанализировано среднее значение продольной деформации базального отдела межжелудочковой перегородки (МЖП) ЛЖ, наибольшие значения продольной деформации были характерны для группы пациентов с ЗЖТ (-5[-6,5;-0,5] и -6,8[-11;-4,4], соответственно, р=0,01). Статистически значимых различий при анализе среднего значения продольной деформации каждой из стенок ЛЖ получено не было.

Наибольшую диагностическую ценность из всех изученных нами предполагаемых маркеров ЗЖТ показало значение МД ЛЖ при сравнении пациентов с наличием и отсутствием ЗЖТ (143,1 [116,5;182,6;] и 90,2 [77,6;118,2], соответственно, p<0,001). На основании

чего был проведен ROC-анализ, по данным которого площадь под ROC-кривой составила 0,817, что представлено в табл. 4, рис. 2. За оптимальную отрезную точку МД ЛЖ, как высоко вероятного маркера ЗЖТ у пациентов с ФВ ЛЖ \leq 35%, на основании полученного анализа установлено значение равное более 120 мс с чувствительностью - 73,3% и специфичностью - 80%.

Таким образом, МД ЛЖ, как параметр оценки неоднородности во времени сокращения различных сегментов миокарда ЛЖ, представляется многообещающим маркером для стратификации риска ВСС, а оценка сегментарной продольной деформации, в частности базальных отделов МЖП ЛЖ и среднего сегмента нижней стенки ЛЖ, может быть дополнительным критерием в оценке риска ВСС у пациентов со снижен-

Таблица 3. Данные спекл-трекинг эхокардиографии в группах пациентов в зависимости от ФВ ЛЖ

	ФВ ЛЖ ≤ 35%			ФВ ЛЖ 36-50%			
	Пациенты с ЗЖТ (n=30)	Пациенты без ЗЖТ (n=30)	p	Пациенты с ЗЖТ (n=33)	Пациенты без ЗЖТ (n=20)	p	
GLS, %	-5,7[-6,9;-3,6]	-6,5[-8,3;-4,8]	0,28	-8,5[-10,9;-7,2]	-8,5[-10,8;-6,2]	0,54	
МД ЛЖ, мс	143,1[116,5;182,6]	90,2[77,6;118,2]	<0,001	101,2[87,1;124,3]	79,8[70,7;90,3]	0,002	
Сегментарная продольная деформация базальных сегментов ЛЖ							
ППС ЛЖ, %	-3[-6;2]	-6,5[-9,8;-3,3]	0,03	-8[-12;-5]	-7[-10,3;-4,5]	0,62	
ЗПС ЛЖ, %	-6[-8;-3]	-8[-11;-5.3]	0,01	-11[-14;-8]	-10[-12;-7,8]	0,29	
МЖП*, %	-5[-6,5;-0,5]	-6,8[-11;-4,4]	0,01	-9,5[-10,5;-7]	-9[-10,6;-6,4]	0,58	
НС ЛЖ, %	-7[-9;-2]	-7[-11,6;-4]	0,27	-11[-16;-7]	-10[-12;-7,8]	0,48	
3С ЛЖ, %	-9[-12;-6]	-8[-9,8;-6]	0,65	-12[-15;-7]	-11[-14;-9,8]	0,93	
БС ЛЖ, %	-7[-10;3]	-8[-10,8;2]	0,61	-9[-11;-5]	-10,5[-13;-6,75]	0,36	
ПС ЛЖ, %	-7[-11;-5]	-7[-9,8;-5]	0,98	-8[-12;-6]	-10[-11;-8,5]	0,4	
Сегментарная прод	Сегментарная продольная деформация средних сегментов ЛЖ						
ППС ЛЖ, %	-5[-10;-2]	-8[-9;-2]	0,85	-10[-13;-4]	-7[-10,5-4]	0,46	
ЗПС ЛЖ, %	-4[-8;2]	-7[-8,8;-4]	0,17	-11[-13;-8]	-9[-12,5;-5,8]	0,26	
НС ЛЖ, %	-3[-6;2]	-6[-9;-1,5]	0,04	-10[-12;-6]	-10[-13;-6,8]	0,69	
3С ЛЖ, %	-5[-10;-3]	-8[-10;-3,3]	0,46	-9[-13;-6]	-9[-12;-6]	0,99	
БС ЛЖ, %	-5[-10;-3]	-8[-10;-2,3]	0,71	-9[-13;-6]	-8[-11,3;-5,8]	0,5	
ПС ЛЖ, %	-7[-9;-4]	-7[-9;-3]	0,51	-10[-13;-8]	-11[-13;-8,5]	0,93	
Сегментарная продольная деформация апикальных сегментов ЛЖ							
МЖП, %	-5[-11;2]	-5,5[-11;1,8]	0,72	-9[-14;-5]	-9[-12,5;-6,8]	0,67	
НС ЛЖ, %	-5[-12;5]	-4,5[-11,8;2,5]	0,71	-9[-16;-6]	-8,5[-14,3;-4,8]	0,7	
БС ЛЖ, %	-7[-10;2]	-6[-8,8;-4]	0,92	-10[-13;-6]	-8,5[-12,3;-4]	0,29	
ПС ЛЖ, %	-6[-10;3]	-4[-8;1,8]	0,61	-9[-13;-5]	-8,5[-11;-5,5]	0,67	
Верхушка ЛЖ, %	-3[-10;2]	-5[-10;-0,3	0,63	-8[-12;-1]	-7,5[-11,3;-3,8]	0,91	
Суммарная региональная продольная деформация ЛЖ							
МЖП, %	-4,3[-6,8;-1,3]	-7,1[-8,4;-2,8]	0,08	-9,3[-12,3;-6,3]	-8,1[-11;-5,3]	0,38	
НС и ЗС ЛЖ, %	-4,8[-7,8;-3]	-6,4[-8,9;-4,6]	0,12	-10,3[-12,3;-7,5]	-9,5[-11,7;-8,2]	0,99	
БС ЛЖ, %	-6,0[-10,5;-0,5]	-7,8[-10;-0,4]	0,89	-9[-12,5;-6,5]	-10[-11,6;-7,6]	0,88	
ПС ЛЖ, %	-7[-8;-3,5]	-7,5[-8,5;-3,5]	0.84	-9,5[-12,5;-7]	-10[-11,5;-6,9]	0,99	
Верхушка**, %	-1,8[-8,6; 1,6]	-4,8[-9,5;-1]	0,6	-10,2[-13,4;-4,2]	-7,3[-11,8;-5,6]	0,63	

Примечание: здесь и далее GLS - глобальная продольная деформация; МД - механическая дисперсия; ППС и ЗПС - передне- и заднеперегородочная стенки; МЖП - межжелудочковая перегородка; ЗС - задняя стенка; * - среднее значение двух сегментов; ** - суммарно по пяти сегментам.

ной ФВ ЛЖ. На рис. 1 продемонстрированы пациенты 2 подгрупп сравнения, имеющие значимые различия параметров СТ ЭхоКГ, описанные выше.

Группа пациентов с ФВ ЛЖ более 35%

Среди всех пациентов было выявлено, что 44 (83%) пациента страдали ишемической кардиомиопатией, 9 (17%) пациентов имели неишемическую кардиомиопатию, из них 6 (66,7%) пациентов страдали дилатационной кардиомиопатией, 3 (33,3%) - декомпенсированным гипертоническим сердцем. В исследуемой группе пациенты отличались по возрасту и были старше в группе пациентов без ЗЖТ. Обращал на себя внимание более высокий уровень NT-pro-BNP, что могло быть связано с неравномерным возрастным распределением (табл. 1). Все пациенты имели ХСН I-III функционального класса по NYHA и были сопоставимы по тесту 6-минутой ходьбы в обеих подгруппах. При оценке данных ЭхоКГ было установлено, что пациенты с ЗЖТ имели большее значение конечнодиастолического объема, в отличие от пациентов без ЗЖТ (166,5 [146,3;193] и 156 [133,8;165,5], соответственно, р=0,04). При этом статистически значимой разницы в конечном систолическом объеме выявлено не было. Значение ФВ ЛЖ также было равнозначно в обеих исследуемых подгруппах (табл. 2).

При анализе параметров СТ ЭхоКГ, таких как глобальная продольная деформация ЛЖ и сегментарная продольная деформация каждого из 17 сегментов ЛЖ статистически значимые различия между группами выявлены не были (табл. 3). Однако, у исследуемых пациентов, также как и у пациентов с ФВ ЛЖ ≤35%, по данным однофакторного анализа выявлено, что значение МД ЛЖ достоверно выше в подгруппе пациентов с ЗЖТ при сравнении с пациентами без ЗЖТ (101,2 [87,1;124,3] и 79,8 [70,7;90,3], соответственно, р=0,002). По результатам ROCанализа диагностической значимостью в отношении развития ЗЖТ обладала величина МД ЛЖ превышающая 90 мс (площадь под ROC-кривой 0,761, чувствительность - 72,7%, специфичность - 75%), что представлено в табл. 4, рис. 2.

Таким образом, МД ЛЖ является наиболее диагностически ценным признаком, который может способствовать более точной стратификации риска ВСС у пациентов с ХСН как со сниженной, так и с промежуточной ФВ ЛЖ вследствие структурной патологии сердца.

ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Одним из основных направлений исследований по улучшению стратификации риска ВСС является поиск способа определить, кому из пациентов со структурной па-

тологией сердца необходима имплантация устройств с функцией дефибриллятора, а кому для этого будет достаточно назначения оптимальной медикаментозной терапии, включая бета-адреноблокаторы. Возникновение ЗЖТ, как наиболее распространенной причины ВСС, является отражением сложного многофакторного процесса, который может изменяться во времени. Хотя оценка значения ФВ ЛЖ по-прежнему является важной детерминантой в стратификации риска ВСС, для определения вероятности возникновения ЗЖТ требуется интегрировать в клиническую практику дополнительные методы обследования, которые позволят более точно определять, как систолическую, так и диастолическую функцию миокарда ЛЖ, по возможности, без использования инвазивных и дорогостоящих методов обследования. По результатам нашей работы другими компонентами модели стратификации риска ЗЖТ могут стать параметры МД ЛЖ и сегментарной продольной деформации ЛЖ, полученные по данным СТ ЭхоКГ. С одной стороны, методика СТ ЭхоКГ позволяет эффективнее и точнее, чем стандартная оценка ФВ ЛЖ, получать информацию об особенностях систолической дисфункции ЛЖ. А с другой, в отличие от магнитно-резонансной томографии, данная методика более бюджетная, доступна в большем количестве медицинских учреждений и может широко применяться у пациентов с наличием магнитно-чувствительных имплантированных приборов.

Глобальная и сегментарная продольная деформация ЛЖ

Как известно, большинство ЗЖТ возникает из областей структурной и электрической неоднородности миокарда внутри и/или вокруг рубца [4]. Это объясняет большое количество исследований для оценки риска ЗЖТ посредством анализа количественных и качественных характеристик рубцового поражения миокарда желудочков с использованием магнитнорезонансной томографии сердца с контрастированием [5-6]. Более косвенная оценка выраженности рубцового поражения миокарда ЛЖ достигается посредством

Таблица 4. Диагностическая значимость показателей эхокардиографии и спеклтрекинг эхокардиографии в отношении наличия ЗЖТ у обследованных пациентов по данным ROC-анализа

	Площадь под ROC-кривой	Чувстви- тельность	Специ- фичность				
Пациенты с ФВ ЛЖ ≤35%							
МД ЛЖ ≥120 мс	0,817 (95%ДИ:0,705-0,928)	73,3%	80%				
ПД БС ЗПС ЛЖ ≤ (-)8%	0,693 (95%ДИ:0,558-0,827)	72,4%	66,7%				
ПД БС МЖП ≤ (-)6%	0,69 (95%ДИ:0,556-0,824)	62,1%	66,7%				
ПД БС ППС ЛЖ≤(-)4,5%	0,666 (95%ДИ:0,524-0,808)	65,5%	66,7%				
ПД СС НС ЛЖ ≤(-)5,5%	0,654 (95%ДИ:0,513-0,795)	69%	63,3%				
Пациенты с ФВ ЛЖ 36-50%							
МД ЛЖ ≥90 мс	0,761 (95%ДИ:0,626-0,897)	72,7%	75%				
КДО ЛЖ ≥165 мл	0,669 (95%ДИ:0,519-0,82)	63%	75%				

Примечание: ДИ - доверительный интервал, ПД - продольная деформация; БС и СС - базальный и средний сегменты.

оценки общей ФВ ЛЖ. В отличие от этих признаков, метод оценки глобальной и сегментарной продольной деформации ЛЖ по данным СТ ЭхоКГ, способен обнаруживать субклиническую желудочковую дисфункцию и рубцовое поражение за пределами объемных измерений. Благодаря количественной оценке амплитуды и времени региональной деформации, методика СТ ЭхоКГ позволяет более тонко охарактеризовать сократимость субэндокардиальных слоёв разных сегментов ЛЖ, что особенно важно при наиболее часто встречающемся поражении миокарда ишемической этиологии. Всё это делает параметры СТ ЭхоКГ многообещающими маркерами риска ВСС.

В исследовании T.Biering-Soren с соавт. (2017) [7] была изучена прогностическая значимость параметров продольной деформации 4 стенок ЛЖ: передней, перегородочной, нижней и боковой. Было установлено, что значение продольной деформации нижней стенки ЛЖ, а именно значение -7%, предрасполагает к развитию ЗЖТ у пациентов с постинфарктным кардиосклерозом и сниженной ФВ ЛЖ. В нашем исследовании данный анализ проводился по каждому из 17 сегментов ЛЖ, а также по группам сегментов, соответствующих различным секторам ЛЖ. Выявленный T.Biering-Soren с соавт. показатель, соответствующий в нашей работе совокупности сегментов нижней и задней стенок ЛЖ, не достиг критерия статистической значимости при сравнении групп. Это могло быть отчасти обусловлено разными объёмами выборки пациентов и отличиями в используемом программном обеспечении. В то же время, в нашем исследовании было выявлено значимое снижение показателя продольной деформации среднего сегмента нижней стенки ЛЖ у пациентов с ЗЖТ, что отчасти подтверждает важность оценки именно этого сегмента ЛЖ.

Полученные статистически значимые показатели снижения продольной деформации базальных сегмен-

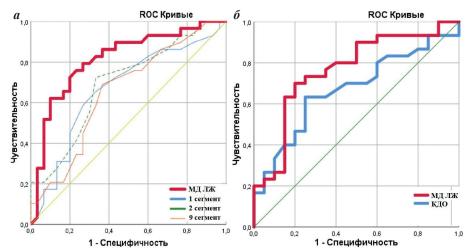


Рис. 2. ROC-кривые для параметров эхокардиографии и спекл-трекинг эхокардиографии в отношении развития злокачественной желудочковой тахикардии а) у пациентов с ФВ ЛЖ ≤35%; б) у пациентов с ФВ ЛЖ 36-50%, где 1 сегмент - продольная деформация (ПД) базального сегмента передне-перегородочной стенки левого желудочка (ЛЖ); 2 сегмент - ПД базального сегмента задне-перегородочной стенки ЛЖ; 9 сегмент - ПД среднего сегмента нижней стенки ЛЖ; КДО - конечный диастолический объем; МД - механическая дисперсия.

тов перегородочной локализации ЛЖ, как возможные прогностические критерии ЗЖТ, у пациентов со сниженной ФВ ЛЖ в литературе ранее описаны не были. Мы предполагаем, что наличие ЗЖТ у этих пациентов может быть связано как с более обширным рубцовым поражением миокарда ЛЖ при ишемической кардиомиопатии, так и с более выраженными изменениями миокарда на фоне неишемической кардиомиопатии. Это требует дальнейшего изучения показателей СТ ЭхоКГ у лиц с наличием и отсутствием ЗЖТ в зависимости от этиологии заболевания сердечнососудистой системы.

Механическая дисперсия ЛЖ

Наиболее важным результатом настоящей работы стало выявление МД ЛЖ в качестве универсального и наиболее ценного параметра ЭхоКГ, ассоциированного с наличием ЗЖТ у больных со структурным поражением миокарда и различной степенью выраженности систолической дисфункции ЛЖ. Особо ценным может быть применение данного маркера для стратификации риска ЗЖТ у пациентов с ФВ ЛЖ >35%, у которых имплантация устройств с функцией дефибриллятора показана только в рамках вторичной профилактики ВСС [2].

В ряде предшествующих работ также сообщалось о прогностической значимости МД ЛЖ. Крупный мета-анализ Н.Каwakami и соавт. (2020) [8] собрал данные из 12 крупных про- и ретроспективных исследований, согласно которым МД ЛЖ может являться независимым предиктором ЗЖТ у пациентов со структурной патологией сердца вне зависимости от ФВ ЛЖ и этиологии ХСН, что соответствует результатами нашего исследования. Согласно исследованию D.P.Leong и соавт. (2014) [9], в котором изучались пациенты с ФВ ЛЖ 38±10,5% на фоне постинфарктного кардиосклероза, МД ЛЖ была независимым предиктором ЗЖТ, а частота встречаемости мономорфной ЗЖТ у пациентов

с значением МД ЛЖ >90 мс было статистически больше, нежели у пациентов, имеющих значение МД ЛЖ ≤90 мс, что согласуется с результатами расчетов МД ЛЖ в нашем исследовании у пациентов группы с ФВ ЛЖ 36-50%.

Важной особенностью нашей работы стало выявление оптимального отрезного значения МД ЛЖ для прогнозирования ЗЖТ в группе пациентов со сниженной (≤35%) ФВ ЛЖ - более 120 мс, что значительно выше выявленных значений по данным большинства проведенных исследований, в т.ч., включенных в мета-анализ H.Kawakami и соавт. (2020) [8]. Однако, наша исследуемая группа имела более выраженные проявления ХСН, нежели пациенты боль-

шинства проведенных исследований, что может объяснять более высокие критерии МД ЛЖ.

Несколько факторов могут объяснять большие значения МД ЛЖ у пациентов с наличием ЗЖТ. Во-первых, более выраженная неоднородность сокращения миокарда может быть обусловлена более распространённым и неоднородным его фиброзным поражением с вовлечением множества сегментов ЛЖ. В пользу этого объяснения говорит также выявленная у пациентов со значениями ФВ ЛЖ ≤35% и наличием ЗЖТ худшая деформация сразу нескольких сегментов ЛЖ. Другой причиной более высоких значений МД ЛЖ могут быть нарушения проводимости электрических импульсов к большему числу сегментов ЛЖ и/или от большего числа сегментов ЛЖ. При сердечной недостаточности обычно имеет место неоднородное увеличение продолжительности потенциалов действия кардиомиоцитов, результатом чего является дисперсия процессов реполяризации в испытывающем напряжение или растяжение миокарде ЛЖ, что может являться основой для формирования в нём аритмогенных субстратов ЗЖТ [10]. Кроме того, на значение МД ЛЖ могут влиять блокады ножек пучка Гиса и другие нарушения проводимости за пределами рубца. В итоге, МД ЛЖ, по-видимому, является всеобъемлющим параметром для оценки структурной и электрической гомогенности рубца, что и объясняет высокую ценность данного показателя в выявлении ЗЖТ в нашем исследовании.

Таким образом, в настоящее время накоплен довольно большой массив данных, указывающих на потенциальную возможность использования МД ЛЖ для стратификации пациентов со структурной патологией сердца различной этиологии по риску возникновения ЗЖТ и ВСС [8-9]. Хотя МД ЛЖ в настоящее время не может рассматриваться в качестве единственного фактора, влияющего на принятие решения о целесообразности имплантации кардиовертера-дефибриллятора для первичной профилактики ВСС, она может служить в качестве важного дополнительного маркера, облегчающего принятие этого важного решения.

Ограничения исследования

Несмотря на продемонстрированные преимущества оценки показателей МД ЛЖ и продольной деформации ЛЖ в стратификации риска ВСС, у метода СТ ЭхоКГ есть ограничения, которые могут уменьшить

его потенциал. Для проведения СТ ЭхоКГ необходимо приобретение дополнительного оборудования, а сами расчеты производить на отдельной рабочей станции в режиме постобработки, что требует дополнительных временных затрат. Низкое качество визуализации сердца, наблюдаемые при конституциональных особенностях и лёгочной патологии, может привести к нечеткому определению границ эндокарда ЛЖ и, как следствие, неверным расчетам показателей СТ ЭхоКГ. Однако, наиболее важным ограничением, на наш взгляд, является разница в значениях МД ЛЖ, получаемая с помощью программного обеспечения у различных производителей [11], что может привести к неверной интерпретации результата.

В настоящее время недостаточно исследована прогностическая роль МД ЛЖ в относительно малочисленных группах пациентов с болезнями накопления (саркоидоз, гемохроматоз сердца), при изолированной некомпактности ЛЖ, при врождённых и приобретённых пороках сердца. В нашем исследовании также не включались пациенты с редкой этиологией структурных поражений миокарда, что может быть перспективным для дальнейших исследований в области изучаемых показателей. Кроме того, мы не включали пациентов с очень низкими значениями ФВ ЛЖ (<20%), так как они прежде всего нуждаются в имплантируемых устройствах механической поддержки кровообращения (LVAD и т.п.), чем в применении схем стратификации риска ЗЖТ и решения вопроса об имплантации ИКД.

ЗАКЛЮЧЕНИЕ

Полученные результаты указывают на перспективность оценки параметра механической дисперсии ЛЖ в стратификации риска возникновения «злокачественных» ЖТ у пациентов со сниженной и промежуточной ФВ ЛЖ на фоне структурной патологии сердца. Кроме того, у пациентов с ФВ ЛЖ ≤35% достаточно информативным может быть использование показателей сегментарной продольной деформации базальных сегментов МЖП и среднего сегмента нижней стенки ЛЖ. Однако, требуется дальнейшее изучение данных показателей СТ ЭхоКГ на больших выборках пациентов для внедрения их в клиническую практику в качестве возможных маркеров ЗЖТ.

ЛИТЕРАТУРА

- 1. Adabag S, Smith LG, Anand IS, et al. Sudden cardiac death in heart failure patients with preserved ejection fraction. *Journal of Cardiac Failure*. 2012;18(10): 749-754. https://doi.org/10.1016/j.cardfail.2012.08.357.
- 2. Zeppenfeld K, Tfelt-Hansen J, Riva M, et al. ESC Scientific Document Group. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. *European Heart Journal*. 2022;43(40): 3997-4126. https://doi.org/10.1093/eurheartj/ehac262.
- 3. McDonagh TA, Metra M, Adamo M, et al. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. *European Heart Journal*. 2021;42(36): 3599-3726. https://

- doi.org/10.1093/eurheartj/ehab368/
- 4. Stevenson WG, Brugada P, Waldecker B, et al. Clinical, angiographic, and electrophysiologic findings in patients with aborted sudden death as compared with patients with sustained ventricular tachycardia after myocardial infarction. *Circulation*. 1985;71(6): 1146-1152. https://doi.org/10.1161/01.cir.71.6.1146.
- 5. Di Marco A, Anguera I, Schmitt M, et al. Late Gadolinium Enhancement and the Risk for Ventricular Arrhythmias or Sudden Death in Dilated Cardiomyopathy: Systematic Review and Meta-Analysis. *JACC. Heart Failure*. 2016;5(1): 28-38. https://doi.org/10.1016/j.jchf.2016.09.017.
- 6. Nelson T, Garg P, Clayton RH, et al. The Role of Car-

- diac MRI in the Management of Ventricular Arrhythmias in Ischaemic and Non-ischaemic Dilated Cardiomyopathy. *Arrhythmia & Electrophysiology Review.* 2019;8(3): 191-201. https://doi.org/10.15420/aer.2019.5.1.
- 7. Biering-Sorensen T, Knappe D, Pouleur AC, et al. Regional Longitudinal Deformation Improves Prediction of Ventricular Tachyarrhythmias in Patients With Heart Failure With Reduced Ejection Fraction: A MADIT-CRT Substudy (Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy). *Circulation. Cardiovascular Imaging*. 2017;10(1): e005096. https://doi.org/10.1161/CIRCIMAGING.116.005096.
- 8. Kawakami H, Nerlekar N, Haugaa KH, et al. Prediction of Ventricular Arrhythmias With Left Ventricular Mechanical Dispersion: A Systematic Review and Meta-Analysis. *JACC. Cardiovascular Imaging*. 2020;13(2 Pt 2): 562-572.

- https://doi.org/10.1016/j.jcmg.2019.03.025.
- 9. Leong DP, Hoogslag GE, Piers SR, et al. The relationship between time from myocardial infarction, left ventricular dyssynchrony, and the risk for ventricular arrhythmia: speckle-tracking echocardiographic analysis. *Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography.* 2014;28(4): 470-477. https://doi.org/10.1016/j.echo.2014.12.012.
- 10. Tomaselli GF, Zipes DP. What causes sudden death in heart failure?. *Circulation Research*. 2004;95(8): 754-763. https://doi.org/10.1161/01.RES.0000145047.14691.db.
- 11. Klein AL, Popović, ZB, Chetrit M. Disparity of Dispersion in Predicting Ventricular Arrhythmias. *JACC. Cardiovascular Imaging*. 2020;13(2Pt2): 573-576. https://doi.org/10.1016/j.jcmg.2019.05.002.