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Aim. Atrial fibrillation (AF) represents one of the most critical cardiac arrhythmias, as it significantly increases the 

risk of stroke. Its detection is particularly challenging due to the unpredictable nature of its episodes. 

Methods. This study proposes a low-complexity algorithm, enabling integration into embedded devices for real- 

time AF episode detection. The proposed method integrates non-linear, time-domain and frequency-domain features ex- 

tracted from electrocardiogram signals with The LightGBM algorithm (an extension of decision tree algorithm) is used 

to classify and detect AF. 

Results. The model was trained using the MIT-BIH AF Database (MIT-AFDB), achieving sensitivity (Se), specificity 

(Sp), accuracy rates (Acc), precision (PPV), F1-score and AUC of 0.9838, 0.9690, 0.9748, 0.9543, 0.9688 and 0.9957, respec- 

tively. We also performed 10-fold cross-validation on this dataset. The obtained values for Se, Sp, Acc, PPV, F1-score, and AUC 

were, respectively, 0.9837 ± 0.0020, 0.9701 ± 0.0021, 0.9755 ± 0.0007, 0.9559 ± 0.0029, 0.9696 ± 0.0008, and 0.9959 ± 0.0002. 

This indicates that the model achieves good performance compared to current studies in AF recognition and detection. 

Conclusions. The experimental results demonstrate that the model achieves high performance in the classification and 

detection of AF episodes. Furthermore, the model is suitable for integration into real-time arrhythmia detection systems. 
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Atrial fibrillation (AF), a life-threatening cardiac ar- 

rhythmia, has shown a significant global burden, with its 

prevalence rising from 33.5 million cases in 2010 to 59 

million in 2019. Projections estimate a twofold to threefold 

increase by 2050, particularly among high-risk populations 

such as hypertensive and diabetic patients. AF is characte- 

rized by uncoordinated atrial electrical activity, leading to 

thrombus formation and elevated stroke risk [1]. Clinically, 

AF is categorized into paroxysmal, persistent, and perma- 

nent subtypes, with the latter posing significant manage- 

ment challenges due to irreversible rhythm disturbances. 

Current diagnostic methods, including Holter moni- 

toring, exhibit limitations in detecting transient AF episodes, 

underscoring the need for advanced monitoring systems. 

Recent advancements in wearable devices and artificial in- 

telligence have enhanced real-time AF detection; however, 

demonstrating their effectiveness in detecting short AF ep- 

isodes lasting less than 30 seconds remains a challenging 

problem. These AF episodes have the potential to develop 

into longer, more persistent episodes, which are more difficult 

to restore to normal sinus rhythm (NSR). Electrocardiogram 

(ECG)-based machine learning models leverage AF-asso- 

ciated markers, such as RR interval irregularity and fibrilla- 

tory wave morphology, to improve classification accuracy. 

Prior studies have employed Markov chains, spectral analy- 

sis, and entropy metrics on RR intervals [2-4], while others 

have integrated atrial activity frequency features [5, 6]. Deep 

learning approaches, in which convolutional neural networks 

(CNNs) are used to automatically extract features with filters 

that have been investigated in recent years, have also been 

explored. In study [7], the authors used segments comprising 

30 RR intervals from the MIT-AFDB, combining CNN and 

Long-Short Term Memory (LSTM) networks to extract high- 

level features for the classification of AF and NSR. The 

model achieved sensitivity and specificity of 98.98% and 

96.95%, respectively. In study [8], the authors used seg- 

ments with a duration of 750 ms - comprising 250 ms be- 

fore the R peak and 500 ms after the R peak - as input data 

for a machine learning model employing a hybrid CNN- 

LSTM network to classify AF and other cases, achieving 

sensitivity and specificity of 97.87% and 99.29%, respec- 

tively. Additionally, some models transform biosignal data 
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into 2D images, which are then fed into CNNs to recognize 

AF and NSR, as demonstrated in studies [9, 10]. However, 

these models require large amounts of input data and power- 

ful computational resources that, in some cases, exceed those 

available on conventional computing devices. 

The development of algorithms that utilize the selec- 

tion of pathological features from ECG signals based on 

time-domain and frequency-domain characteristics is of 

considerable significance. These models facilitate a reduc- 

tion in the number of input features and require less training 

data compared to deep learning models, making them more 

suitable for real-time applications. In this study, we propose 

a method that incorporates time-domain features, nonlinear 

features of heart rate variability (HRV), and the morphologi- 

cal characteristics of atrial activity in cases of AF and NSR, 

along with frequency-domain features for the identification 

and detection of AF episodes. The model was developed us- 

ing the MIT-AFDB and validated on the SHDB-AF Data- 

base (SHDB-AF). Furthermore, the implementation of the 

LightGBM algorithm enhances the model’s applicability in 

real-time systems for AF recognition and detection. 

METHODS 

Outline of proposed method 

In this study, we propose a methodology that incor- 

porates HRV, time- and frequency-domain features along- 

side a machine learning model to classify and detect AF 

using ECG signals. The feature set construction process 

in the proposed algorithm consists of the following steps: 

signal preprocessing, which includes signal selection, fil- 

tering, and analysis; computation of HRV features in the 

time domain; calculation of frequency-domain features; 

construction of the machine learning model; and evalua- 

tion of its performance. 

The classification and detection algorithm are de- 

signed for single-channel ECG signals. To compute 

time-domain and frequency-domain features, the ECG 

signal first undergoes noise filtering. Subsequently, feature 

extraction is performed by isolating characteristic waves of 

the ECG signal, including the QRS complex, P wave, and 

T wave. HRV features, encompassing time-domain and 

nonlinear characteristics, are identified. Additionally, atrial 

waveform morphology features in cases of AF and NSR 

are determined through QT intervals on the ECG signal. 

Frequency-domain features are extracted by analyzing the 

peak energy spectral distribution under varying conditions. 

Finally, the LightGBM algorithm is utilized to classify 

ECG signals into two categories: AF and non-AF. 

Signal preprocessing 

Elimination of baseline drift noise was achieved 

using a median filter [11]. Following the removal of base- 

line drift, a Savitzky-Golay smoothing filter was applied 

for mitigating high-frequency noise [12]. Both the median 

filter and the Savitzky-Golay filter preserve the morpho- 

logy of the ECG signal, ensuring that the original signal 

characteristics remain unchanged. After denoising the 

ECG signal, premature ventricular complexes and prema- 

ture atrial complexes were removed based on the length of 

the RR interval. Detection is based on the criterion that the 

distance from the R peak of abnormality to the preceding R 

peak is less than 0.8 times the average RR interval. 

ECG signals were subsequently segmented, inclu- 

ding QRS complexes and T-wave endpoints. Detection of 

QRS complexes was performed using the Pan-Tompkins 

algorithm [13]. This algorithm identifies QRS complexes 

through filtering and thresholding techniques for locating 

R-peaks. Positions of the Q and S waves were determined 

relative to the R-wave positions. Identification of T-wave 

positions was carried out using the Zhang algorithm, which 

leverages the convexity or concavity of the T-wave [14]. 

The primary advantage of these waveform segmenta- 

tion algorithms lies in their low computational complexity 

and high effectiveness in detecting ECG waveforms. Thus, 

they are well-suited for real-time analysis and recognition 

of ECG signals. 

Heart rate variability features 

AF is characterized by irregular RR intervals. Conse- 

quently, HRV features play a crucial role in detecting AF. 

In this study, statistical features of RR intervals, including 

the mean, range, and dispersion, were utilized as inputs for 

the machine learning model. These parameters are defined 

by Eq. (1), (2), and (3), as follows. 

 

The non-linear features of HRV analyzed include 

the SD1 and SD2 parameters derived from the Poincaré 

plot, and the ellipse area defined by the SD1 and SD2 axes. 

These parameters provide insights into HRV, with SD1 re- 

flecting short-term variability and SD2 representing long- 

term variability. The irregularity of RR intervals is evident 

in the scattergram of RR intervals, distinguishing cases of 

AF from NSR. The SD1 and SD2 values and area of ellipse 

are calculated using Eq. (4), (5) and (6), respectively. 

 

 

where the Var functions correspond to the variance func- 

tion of the respective variable of the function. 

Time-domain features 

In the case of patients with AF, small-amplitude atrial 

f waves with varying frequencies and shapes appear on the 

ECG signal. The QT interval is the wave interval measured 

from the end of the T wave to the start of the QRS complex 

(QRS onset). These points are determined using the algo- 

rithms mentioned above. Subsequently, the synchroniza- 

tion of the signal intervals is performed using interpolation 

methods to assess the variability of the QT interval in both 

AF and NSR cases. 

Due to changes in the relative position of the Q wave 

with respect to the R peak, the position of the P wave peak 
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in some cases also changes within the analysis window. 

Therefore, when synchronizing the QT intervals in the case 

of NSR, we account for the position of the P wave peak. 

The probability of detecting the P peak is expressed through 

the following conditions: (i) the P peak appears within 180 

ms before the R peak and (ii) the amplitude of the P wave 

is not less than 0.02 times the average amplitude of the R 

wave in the signal analysis window. If P peaks satisfying 

both of two conditions (i) and (ii), the QT intervals within 

the analysis window are synchronized through interpola- 

tion using three points of the largest QT interval: the end- 

point of T wave, the QRS onset point, and the peak of the 

QT interval or the P wave peak. In the opposite case, the 

QT intervals are synchronized through interpolation using 

only the endpoint of T wave and the QRS onset points of 

the largest QT interval. The feature used to determine the 

presence of the P wave on the QT interval is defined by Eq. 

(7), (8) and (9), as follows. 

 

where, TQi represents the QT intervals in the monitored 

signal segment after synchronization, TQ is the average 

value of the TQi intervals, N
De≥Dth 

is the number of D
e 

val- 

ues greater than a specified threshold D
th 

(in this study, D
th 

is empirically determined to be 0.8), N
b 

is the number of 

QT intervals after excluding premature ventricular beats 

and premature atrial beats, and || || denotes the length of 

a vector. 

Frequency-domain features 

In this study, the power spectral distribution is uti- 

lized as a feature for identifying and classifying AF and 

NSR. The power spectrum is computed using a method 

that eliminates spectral leakage at the main spectral peaks 

of the signal’s power spectrum. This approach enables the 

identification of peak distribution based on clear separa- 

tion in the signal’s power spectrum. The process involves 

Table 1. 

Classification Features 
 

Feature Description 

RRmean Mean of RR intervals 

dRR Range of RR intervals 

dispRR Dispersion of RR intervals 

SD
1 

Short-term variability of HRV 

SD
2 

Long-term variability of HRV 

Area
SD 

Area of the ellipse defined by SD1 and SD2 

Var
De 

Variability of TQ intervals 
 

 Dispersion of ECG signal power spectrum peaks 

σ
SD1 Modified SD1 of ECG signal power spectral peaks 

σ
SD2 Modified SD2 of power spectral peaks 

Area
σ 

Modified of area of the ellipse defined by SD1 

and SD2 of power spectral peaks 

multiplying the signal with appropriate windows. It can be 

observed that, in the case of NSR, the power spectral peaks 

are evenly distributed due to the stability of the ECG sig- 

nal. Assume a sequence of spectral peaks  is obtained, 

where i = 1,2,...M +1, and M + 1 represents the number of 

spectral peaks within the frequency range [0,15 Hz]. The 

frequency-domain feature is defined as the variance of the 

sequence , for 1<i<M, as determined by Eq. 

(10). 

 

where,  represents the mean value of the sequence . 

The distribution of peaks is determined based on the 

power spectrum of the signal, independent of the detection 

of the ECG’s R peak. Therefore, this approach is particu- 

larly beneficial in scenarios where the signal remains stable 

during NSR but is affected by noise, especially when the R 

peak has a lower amplitude compared to other waveform 

peaks. In such instances, we determine the variability val- 

ues of the non-linear HRV features similarly to those de- 

fined in Eq. (4), (5), and (6). Variations in the peak spectral 

distribution are calculated according to Eq. (11), (12), and 

(13) as follows. 

 
 

Building machine learning model for classification 

ECG database 

The MIT-AFDB comprises 25 records, each con- 

taining two ECG signals recorded over durations ranging 

from 6 to 10 hours at Beth Israel Hospital in Boston. The 

signals were sampled at a frequency of 250 Hz with an an- 

alog-to-digital converter (ADC) resolution of 12 bits. The 

dataset provides annotations for episodes of AF, NSR, and 

non-AF arrythmias, including atrial flutter (AFL). Notably, 

most AF cases in this dataset are classified as paroxysmal AF 

(PAF) [2, 15]. Apart from recordings 00735m and 03665m, 

which are unavailable, the remaining recordings were uti- 

lized for training and evaluating the machine learning mod- 

el. The SHDB-AF (Saitama Heart Database Atrial 

Fibrillation) is an open-source ECG recording database 

from Japan, consist- ing of 100 patients with PAF [15, 16]. 

The recordings were collected over approximately 24 

hours between November 2019 and January 2022. Data 

acquisition was performed us- ing a Holter monitor with a 

sampling frequency of 125 Hz, recording two leads per 

session according to the CC5 and NASA configurations. 

The recordings in the database un- derwent preprocessing 

to remove baseline wander and high- frequency noise and 

were subsequently unsampled to 200 Hz. The dataset 

includes five classified rhythm types: AFIB (atrial 

fibrillation), AFL (atrial flutter), AT (atrial tachycardia), 
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PAT (other supraventricular tachycardias), NOD (intranodal 

tachycardias), and N (other rhythms, including NSR). 

Classification 

We used the MIT-AFDB dataset to train the model. 

Signal segments were extracted from record 1 for each 

patient, after which these segments were translationally 

shifted by q = 300 steps, corresponding to approximate- 

ly one cardiac cycle at a sampling frequency of 250 Hz. 

The signals were filtered to remove noise, and features 

were computed as described in the preceding sections and 

shown in the Table 1. A total of 685,771 samples were ob- 

tained using this method, including 272,032 AF samples 

and 413,739 non-AF samples. 

In this study, the LightGBM algorithm was em- 

ployed to construct the model. LightGBM is a gradient 

boosting framework based on 

decision tree algorithms, de- 

signed to enhance model perfor- 

mance and reduce memory us- 

age while effectively handling 

large-scale data. It incorporates 

several novel techniques, in- 

cluding Gradient-based One- 

Side Sampling, which selec- 

tively retains cases with steep 

gradients during training to op- 

timize both memory usage and 

model metrics across the cross-validation folds are illus- 

trated in Fig. 2. 

The model was additionally validated on the SHDB- 

AF. Segments with a length of 15 seconds were extracted 

using a sliding window with a step size of 240 samples, 

corresponding to 1.2 seconds at a sampling frequency 

of 200 Hz. The total number of samples is 6,740,673, 

of which 1,201,561 are labeled as AF and the remaining 

5,539,112 as non-AF, which were used for model testing. 

The confusion matrix and ROC curve for the SHDB-AF 

are presented in Fig. 3. The model performance metrics, 

including Se, Sp, Acc, PPV (Positive Predictive Value) and 

FPR (False Positive Rate), in Table 2 and the ROC curve 

(AUC = 0.9503) on the SHDB-AF indicate that the pro- 

posed model can effectively operate on unseen data. 

training time. The advantages 

of this algorithm include rapid 

training speed, high training 

efficiency, robust performance 

with imbalanced data, ease of 

parameter tuning, and a reduced 

risk of overfitting [17]. 

RESULTS 

The MIT-AFDB dataset 

was partitioned into training 

and testing sets in a 70%:30% 

ratio. The computing system 

utilized comprised an Intel Core 

i7 12700K CPU (5.2 GHz), a 

12 GB GPU (Nvidia GeForce 

RTX  3060),  and  32 GB of 

RAM. The confusion matrix and 

ROC curve based on the MIT- 

AFDB are presented in Fig. 1. 

The sensitivity (Se), specificity 

(Sp), accuracy (Acc), precision 

(PPV), F1 score, and AUC are 

0.9838, 0.9690, 0.9748, 0.9543, 

0.9688, and 0.9957, respective- 

ly. We also conducted 10-fold 

cross-validation. The average 

values of Se, Sp, Acc, PPV, F1 

score, and AUC are 0.9837 ± 

0.0020, 0.9701 ± 0.0021, 0.9755 

±  0.0007,  0.9559  ±  0.0029, 

0.9696 ± 0.0008, and 0.9959 ± 

0.0002, respectively. A compara- 

tive table and distribution of 

Fig. 1. Confusion matrix for AF classification and AUC curve with MIT-AFDB. 
 

Fig. 2. Model performance metrics across folds in a 10-fold cross-validation 

of the MIT-AFDB. 
 

Fig. 3. Confusion matrix and ROC curve for the SHDB-AF. 
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DISCUSSION 

Due to the irregular heart rate in cases of AF, various 

HRV features are used. Additionally, to assess the presence 

of atrial waves instead of the typical P-waves, study [20] 

combines heart rate variability indices (standard deviation 

of RR intervals, range of RR intervals) with the number 

of threshold crossings in the atrial wave segment within 

the QT intervals. Threshold-based parameters are then em- 

ployed to classify AF and non-AF. In another approach, 

study [21] proposes using single-parameter wavelet entro- 

py to detect atrial fibrillation by determining the optimal 

threshold for the wavelet entropy of QT intervals, thereby 

classifying AF and non-AF. However, this method is sen- 

sitive to noise, and variations in QT intervals across ECG 

signal segments may fluctuate between cardiac cycles, re- 

ducing classification accuracy. 

Studies that rely on RR interval parameters depend on 

accurate detection of R-peaks. In many cases, misidentifica- 

tion of R-peaks leads to errors in AF detection. This issue is 

particularly evident when R-peaks have much lower ampli- 

tudes than T-waves. Notable examples include ECG recor- 

dings from the MIT-AFDB, specifically in records 04015m, 

04043m, 04908m, 04936m, 06426m, 06453m, and 07162m. 

In this study, we address these challenges by combining 

parameters, including RR interval variability, QT interval 

variability, and the spectral peak distribution in the power 

spectrum. Calculating QT interval variability based on Eq. 

(8) helps mitigate the impact of noise on QT interval assess- 

ments. Furthermore, computing the spectral peak distribu- 

tion as a parameter independent of ECG waveform detection 

enhances the classification accuracy, particularly in cases 

where R-peak detection is unreliable. This combination of 

parameters improves the overall specificity, sensitivity, and 

accuracy of the AF detection algorithm, thereby enhancing 

its general performance in AF identification. 

In recent studies, deep learning models used for AF 

detection have shown good performance. In study [7], the 

Table 2. 

Evaluation metrics of the model on the SHDB-AF 
 

Metrics SHDB-AF 

Se 0.9012 

Sp 0.9298 

Acc 0.9247 

PPV 0.7359 

FPR 0.0702 

authors used RR intervals combined with CNN and LSTM 

networks for feature extraction; our model demonstrates 

improved performance compared to study [7], with both 

employing the MIT-AFDB as input. In study [8], the 

authors utilized raw ECG signals from the MIT-AFDB 

with CNN and LSTM networks, and our proposed model 

exhibits higher sensitivity and lower specificity. However, 

the model in the study [8] has not yet been validated on ex- 

ternal unseen data. In study [19], the authors employed sig- 

nal features and RR intervals from five different databases 

(CPSC2021, MIT-AFDB, LTAF, MITDB, and NSRDB) 

and achieved generalization on the training database, but 

did not extend this generalization to other databases. This 

study demonstrates that the model performs well across 

different databases, considering factors such as ethnicity, 

gender, and lifestyle. The training results obtained using 

the MIT-AFDB with the LightGBM algorithm and the tra- 

ditional feature engineering methods compared to recent 

machine learning models demonstrate that the algorithm 

achieves performance metrics comparable to those models. 

Tabl. 3 presents the model performance metrics in compa- 

rison with recent studies. Comparative results indicate that 

the model can classify AF and non-AF with high perfor- 

mance metrics relative to previous studies. 

In the algorithm, low-complexity algorithms are 

used. This allows the algorithm to be applied in embedded 

systems for real-time AF detection. The embedded system 

records ECG signals from leads where f-waves may appear 

when the patient is in an AF episode. The signals are digi- 

tized and transmitted to handheld devices, such as phones, 

through wireless channels like Bluetooth. These signals are 

stored in buffers with a length equal to the analysis window 

length. The features are calculated based on algorithms. 

The machine learning model is stored in the operating 

system and predicts the output based on the input features 

through sliding windows. The sliding windows are shifted 

by approximately one cardiac cycle compared to the pre- 

vious window. The machine learning model can also be ap- 

plied and embedded in edge devices in embedded systems, 

helping to reduce the load on servers. 

Based on the method described above, the start and 

end points of an AF episode can be determined in real-time, 

allowing for the calculation of its duration. In real-time 

monitoring of patients with AF, the duration and frequency 

of HRV associated with AF are critical factors in both diag- 

nosis and the formulation of treatment plans. These factors 

provide insight into the progression of the disease. Based 

on charts displaying the duration and frequency of ar- 

Table 3. 

Comparison of the model’s performance with other recent deep learning 

algorithms developed for AF detection 
 

Study Methods 
Evaluation Metrics 

Sp, % Se, % Acc, % 

[7] RR intervals and CNN - LSTM 96.29 98.17 97.10 

[8] ECG beats and CNN - LSTM 99.29 97.87 - 

[19] 
ECG and RR intervals with 

Res-CNN and BiLSTM 
- - 98.63 

This study TFE and LightGBM 96.90 98.38 97.48 

rhythmia, healthcare providers can make 

informed recommendations tailored to 

the patient’s condition. In practice, when 

acquiring ECG signals from patients, for 

example, when using home monitoring 

devices such as Holter or real-time moni- 

toring devices, in some cases, the signals 

are significantly affected by noise, causing 

signal distortion. This leads to an inabili- 

ty to recognize the signal. Some patients, 

in addition to AF, may also have other ar- 

rhythmias, such as AFL. These two types 

of signals can be confusing and can be 
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misclassified. In future studies, we will continue to deve- 

lop methods for classifying and recognizing AF with back- 

ground factors like noise and other arrhythmias. 

Limitations 

The proposed algorithm faces challenges in accu- 

rately detecting AF when the signal quality index of the 

ECG recording is suboptimal. In such cases, essential ECG 

waveforms, including the QRS complexes, T waves, and P 

waves, become indistinct, leading to errors in the detection 

and classification of AF. The model failed to accurately 

classify an ECG signal exhibiting junctional rhythm, such 

as, in record 04013m of MIT-AFDB. Furthermore, in the 

case of a patient with AFL and variable F-wave morpho- 

logy, such as transitions from 2:1 to 3:1 conduction block - 

the algorithm similarly produced a misclassification. This 

error is evident in record 07910m of MIT-AFDB. 

CONCLUSIONS 

The AF detection algorithm enables the classification 

and identification of AF as well as NSR. The model em- 

ploys machine learning techniques that leverage features 

derived from both the HRV, time-domain and frequency- 

domain and has been validated using verified databases. 

Its low computational complexity makes it suitable for 

integration into real-time AF detection and classification 

systems. The model is well-suited for implementation in 

automated ECG signal analysis software for Holter moni- 

tors or wearable smart devices designed for home use. 
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