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Among studies addressing ECG-based risk stratification for sudden cardiac death and life-threatening ventricular 
arrhythmias, novel approaches to ECG data analysis and derived markers of myocardial electrical instability are of par-
ticular interest. Notably, metrics obtained through vector-based, frequency-domain, and nonlinear ECG analysis have 
demonstrated significant value as predictors of high-risk ventricular arrhythmias and sudden cardiac death. 
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Sudden cardiac death (SCD) remains one of the most 
pressing challenges in contemporary healthcare. Accord-
ing to current understanding, its most common cause is 
the occurrence of life-threatening ventricular arrhythmias 
(VA), including sustained ventricular tachycardia (VT) and 
ventricular fibrillation (VF).

The modern approach to VA research considers a 
comprehensive “arrhythmic profile” comprising the ar-
rhythmic substrate, determined by the underlying cardiac 
disease, clinical, electrocardiographic, and electrophysio-
logical characteristics (including the precipitating (trigger) 
factors), and ECG-derived markers of myocardial electrical 
instability (MEI). ECG-based MEI markers can reflect var-
ious mechanisms of arrhythmogenesis - both substrate-re-
lated and trigger-related, and are intended to improve the 
prediction of life-threatening VA.

A recent review dedicated to ECG MEI markers pro-
posed their classification into two groups: established and 
novel markers. The first group markers are widely recog-
nized by researchers and clinicians, have been extensively 
studied (including meta-analyses), and in some cases in-
corporated into clinical guidelines [1]. Meanwhile, novel 
markers enabled by advances in information technologies 
and computational power allow extraction of previously 
inaccessible ECG information. As such, novel ECG mark-
ers warrant further investigation to evaluate their clinical 
applicability.

The aim of the present review is to analyze studies 
focusing on selected novel ECG MEI markers as predictors 
of life-threatening VA and SCD, examining the underlying 
hypotheses, methodological aspects of their assessment, 
and nuances in clinical interpretation.

Language Search 
tools Keyword combinations

English

PubMed, 
Google 
Scholar, 
Scopus

Main
(SCD OR Sudden cardiac death OR Sudden arrhythmic death) AND (ECG 
OR Electrocardiography OR Electrocardiographic) AND (New OR Novel) 

AND (Markers OR Predictors)

Clarifying
(Ventricular AND (Arrhythmia OR Dysrhythmia)) AND (ECG OR 

Electrocardiography OR Electrocardiographic) AND (New OR Novel) 
AND (Markers OR Predictors)

Clarifying
(SCD OR Sudden cardiac death OR Sudden arrhythmic death) AND 

(Entropy OR Nonlinear dynamics OR Frequency OR Transform OR <до-
полнительные уточняющие ключевые слова>)

Clarifying <Название заболевания> AND <Название нового ЭКГ-маркера>

Table 1. 
Strategy for searching publications in scientometric databases for the period 2014-2025
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This review covers research published between 2015 
and 2025. Core search strategy is presented in Table 1. 
Within the scope of this work, the novel ECG MEI markers 
are categorized into three groups based on their approach 
to analysis of recorded ECG signal and derived data:

Analysis of diagnostically relevant parameters di-
rectly measured from the ECG. Here, the temporal dynam-
ics of quantitative indices are evaluated and correlated with 
VA/SCD risk. Of particular interest is a set of novel vec-
torcardiographic (VCG) parameters collectively termed 
Global Electrical Heterogeneity (GEH) [5-12]:
•	 Spatial QRST angle - the 3D angle between the depo-
larization and repolarization vector loops, analogous to 
the well-known frontal QRST angle, a recognized MEI 
marker.
•	 Spatial ventricular gradient (SVG) vector magnitude 
and sum absolute QRST integral (SAI QRST) - indices 
reflecting heterogeneity in myocardial depolarization and 
repolarization.

Frequency-domain analysis of ECG parameters re-
lated to ventricular repolarization. This includes time-fre-
quency transformation of time series of angles between 
successive T-wave axes, or direct analysis of T-wave fre-
quency content. Parameters are assessed both relative to 
threshold values and as trends. Two frequency-based ECG 
markers are of particular interest:
•	 Periodic Repolarization Dynamics (PRD) - low-fre-
quency (<0.1 Hz) power spectral density of a time series of 
angles between successive T-wave axes, evaluated from a 
20-minute ECG recording [13-15].
•	 f99 index - the frequency at which the nor-
malized spectral energy of the T wave reaches 
99% [16, 18, 19].

Nonlinear analysis of ECG parameters 
(RR, QT intervals). This approach assesses the 
presence and degree of nonlinear components 
against deterministic and stochastic compo-
nents of a time series. Notable nonlinear ECG 
markers include entropy-based measures (e.g., 
heart rate variability (HRV) entropy, repolar-
ization entropy) and fractal methods such as 
detrended fluctuation analysis (DFA):
•	 Combinations of linear (statistical and fre-
quency-domain) and nonlinear (entropy-based, 
fractal) HRV indices, analyzed using machine 
learning algorithms (e.g., k-nearest neighbors, 
support vector machines) for risk stratification 
or prediction of VA/SCD [27-36].
•	 Nonlinear indices of the repolarization 
phase calculated from sequences of selected 
ECG intervals [37, 42].

PROPERTIES OF LINEAR  
AND NONLINEAR SYSTEMS

Key properties of linear systems include 
additivity (the system’s response to a com-
posite input equals the sum of its responses to 
each component), homogeneity (the system’s 
response is proportional to the input magni-
tude), and invariance (temporal changes in the 
input produce corresponding temporal changes 

in the output). These properties significantly simplify the 
study, modeling, and prediction of linear system behavior.

In contrast, the defining feature of nonlinear systems, 
as the name implies, is the absence of these properties, 
enabling the emergence of phenomena such as chaotic 
behavior (high sensitivity to initial conditions), multista-
bility (presence of multiple stable states), emergence 
(appearance of properties absent in individual elements), 
scale invariance and self-similarity (retention or repetition 
of structural patterns across scales), temporal evolution of 
states, self-organization, and adaptability.

Such properties complicate the investigation and pre-
diction of nonlinear system behavior considerably. Howev-
er, by employing numerical measures of chaoticity - such 
as entropy, Lyapunov exponents, fractal dimension, phase 
portraits, and others - it is possible to assess certain prop-
erties of a dynamic system from its time series, obtaining 
important prognostic parameters.

NONLINEAR AND FRACTAL PROPERTIES  
OF THE CARDIOVASCULAR SYSTEM

Multiple levels of organization and richness of com-
ponent interactions that inherently confer nonlinear behav-
ior characterize biological systems. The cardiovascular 
(CV) system is no exception, exhibiting nonlinear proper-
ties at all organizational levels: from the single myocardio-
cyte (dependence of response to a stimulus on the current 
phase of the action potential), to the heart as an organ (loss 
of Frank-Starling law linearity in pathologically elevated 
preload), to the CV system as a whole (complex neurohor-

Fig. 1. GEH parameters: spatial QRST angle between QRS and T 
wave loops in three-dimensional space.
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monal regulation of blood pressure and heart rate mediated 
by feedback loops).

Another important property of many biological sys-
tems is fractality - self-similarity and recurrence across 
different scales. In the CV system, this property manifests 
both structurally and functionally. Examples include frac-
tal-like branching of the conduction system and the hier-
archically interconnected operation of feedback control 
loops from cellular to systemic level.

CV biosignals (ECG, HRV and others) under certain 
conditions can be viewed as generated by deterministic 
chaos, where apparently irregular fluctuations conceal de-
terministic nonlinear components [2, 3].

The dynamic system generating these signals evolves 
over time in such a way that current-state analysis enables 
forecasting of future state, such behavior known as itera-
tive. This forms the basis for studying and predicting phys-
iological system dynamics using a set of nonlinear param-
eters measured at the present or prior time points.

It can therefore be assumed that the nonlinear, dynam-
ic, iterative and fractal nature of processes within the CV 
system determines the properties of the biosignals it gen-
erates. While nonlinear system behavior can be described 
using linear methods in a process known as linearization, 
this requires the system to be near an equilibrium point - for 
example, the analysis of resting ECG recordings. These con-
straints support the rationale for exploring novel MEI mark-
ers obtained via nonlinear analysis. Nonlinear indices offer 
greater precision and reliability in extracting information 

from signals originating from inherently chaotic, dynamic 
sources, despite their increased computational complexity.

ANALYSIS OF DIRECTLY MEASURED ECG 
PARAMETERS

Numerous temporal and amplitude-based parame-
ters can be directly measured from the raw ECG signal. 
This group includes various intervals, many of which are 
already recognized as established markers of myocardial 
electrical instability, as well as VCG features (vectors, an-
gles, areas) that have yielded several novel MEI markers.

The assessment of myocardial electrical activity 
and its spatiotemporal dynamics in normal and patholog-
ical states is of particular interest for stratifying the risk 
of life-threatening VA and SCD. These dynamics can be 
described geometrically in terms of vectors, angles, and ar-
eas. Well-known examples of such descriptors include the 
electrical axes of the QRS complex, P and T waves. Dif-
ferences in vector orientations are quantitatively expressed 
as angles, the most familiar being the frontal QRST angle. 
While these vectors and angles can be readily calculated 
in the frontal plane from a standard 12-lead ECG, their 
three-dimensional assessment is more feasible using ECG 
recorded in a VCG system (most commonly Frank leads 
system) or transformed into such system, as reflected in the 
calculation methods for this group of indices.

Global electrical heterogeneity parameters
in the 1930s, Wilson et al. introduced the concept of 

the SVG - a vector directed toward the myocardial region 
with the shortest action potential duration. This 
index reflects the axis of maximal electrical het-
erogeneity in the heart, but its calculation com-
plexity historically limited its clinical adoption 
[4]. In 2010, Tereshchenko et al. expanded this 
concept by introducing the SAI QRST param-
eter. This parameter is calculated as the sum of 
the absolute values of areas under QRST curve, 
averaged over 5 minutes, in three orthogonal 
leads. The authors hypothesized that changes 
in SAI QRST reflect the spatiotemporal het-
erogeneity of myocardial electrical activity. 
In a healthy heart, synchronous depolarization 
wave propagation ensures mutual cancellation 
of opposing electrical fields in different myo-
cardial regions, whereas electrical heteroge-
neity - such as that arising from ischemia or 
fibrosis - leads to uncompensated potentials, 
altering the SAI of the QRS complex. Similar-
ly, heterogeneity of repolarization (e.g., due to 
ischemia or electrolyte imbalances) manifests 
as differences in the temporal and amplitude 
characteristics of repolarization among myo-
cardial segments, producing changes in the 
SAI of the T wave. Integrating over the entire 
QRST interval allows assessment of heteroge-
neity contributions from both depolarization 
and repolarization.

In a pilot study, a low SAI QRST was 
associated with a more than threefold increase 
in the risk of life-threatening VA; however, 
this finding was not replicated in a subsequent 

Fig. 2. GEH parameters: SVG vector (sum of QRS and T vectors in 
three-dimensional space) and its scalar analog SAI (total area under 
QRST curve).
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study in which elevated, not reduced, SAI emerged as the 
risk marker. These contradictory results were likely attrib-
utable to differences in the clinical characteristics of the 
study populations [5-7].

Subsequently, the group of VCG parameters com-
prising the spatial QRST angle [8], SVG vector magnitude, 
and SAI QRST became collectively known as GEH param-
eters (Figs 1 and 2).

In a large, long-term population-based study based on 
the ARIC database, Perez-Alday et al. (2019) investigated 
the prognostic value of GEH parameters for SCD over a 
mean follow-up of 24,4 years. Based on the analysis of 
577 SCD events recorded (3,7% of the cohort), the authors 
proposed a biphasic model of SCD risk stratification: in 
the short term, the significant predictor was an SVG vector 
directed toward the ventricular outflow tracts, indicating 
the presence of myocardial regions with a short refractory 
period - a potential VA substrate; in the long term, great-
er predictive value was found for an SVG vector directed 
toward the LV and a wide QRS-T angle, reflecting LV re-
modeling as a chronic arrhythmic substrate [9].

Further work focused on developing an SCD risk 
score based on GEH indices. Waks et al. (2016) conducted 
a study combining cohorts from the ARIC and CHS stud-
ies. Over a median follow-up of 14 years, 486 SCD events 
occurred (7,56%). Proportional (PR) and competing risk 
(CR) models were construct-
ed, incorporating demographic 
characteristics, cardiovascular 
history and risk factors, estab-
lished ECG indices (heart rate, 
QTc duration, QRS width, LV 
hypertrophy, intraventricular 
conduction abnormalities), and 
longitudinal changes in the GEH 
parameters. Across all models, 
GEH indices retained indepen-
dent prognostic value; inclusion 
of LVEF did not significantly al-
ter the correlations. The most ro-
bust predictors were the spatial 
QRS-T angle, SAI QRST, and 
SVG vector magnitude. A risk 
calculator based on these find-
ings was made available in the 
supplementary materials of the 
original article [10].

Subsequently, Waks et al. 
investigated the prognostic utili-
ty of GEH parameters in patients 
with structural heart disease in 
the multicenter retrospective 
GEHCO study [11]. The prima-
ry endpoint was appropriate ICD 
therapy delivery for sustained 
VT. Over a median follow-up of 
4 years, 541 patients (≈5% annu-
ally) reached the endpoint. Four 
CR models were developed: 
model 1 including demographic 
variables only, model 2 adding 

cardiovascular risk factors, model 3 adding device charac-
teristics and model 4 additionally incorporating established 
ECG markers (heart rate, QRS width, QTc duration).

Given the previously observed inconsistent associa-
tion of SAI QRST with arrhythmic risk, additional analysis 
was performed for subgroups by IHD status. After full ad-
justment (model 4), the spatial QRS-T angle, SVG vector 
direction, and SVG magnitude were significantly associat-
ed with the primary endpoint. Notably, arrhythmic risk cor-
related directly with QRST angle and SVG direction, and 
inversely with SVG magnitude. In IHD patients, elevated 
SAI QRST correlated with increased risk, whereas in non-
IHD patients, lower SAI QRST was the risk marker. These 
findings were consistent with earlier observations that a su-
perior-posterior SVG direction and wide QRS-T angle in-
dicate elevated arrhythmic risk. The authors hypothesized 
that nonuniform SAI-VA risk correlation was caused by the 
underlying substrate for electrical heterogeneity. In IHD, 
electrical heterogeneity is driven by localized ischemia - 
manifesting as increased SAI, higher SVG magnitude, and 
vector orientation toward the arrhythmogenic substrate, 
whereas in non-ischemic etiologies, diffuse myocardial 
remodeling and fibrosis dominate, replacing electrically 
active myocardium and thus decreasing both SAI and SVG 
magnitude, without specific directional changes (described 
as the vector pointing «toward the entire LV»).

Fig. 3. PRD calculation: a - ECG in orthogonal lead system and T wave 
extraction; b - T wave electrical axis vectors and angles between them; c - time 
series of angles between T wave vectors (αT); d - power spectrum obtained by 
Fourier transform of angle time series. PRD is defined as power below 0,1 Hz.

a

b

c

d
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These observations emphasize the necessity of ac-
counting for myocardial disease etiology when developing 
GEH-based risk models. Study limitations included the 
lack of standardized ICD programming protocols, absence 
of postmortem ICD analysis in deceased patients to deter-
mine arrhythmic events immediately preceding death, and 
the debated validity of using ICD therapy delivery as a sur-
rogate endpoint for SCD - concerns also noted in earlier 
studies [12].

VCG markers exemplify a concept discovered ahead 
of its time: introduced in the 1930s, they remained largely 
unused in clinical practice due to calculation complexity, 
but modern advances in automated ECG analysis have re-
vived scientific interest in these parameters.

FREQUENCY-DOMAIN ANALYSIS  
OF REPOLARIZATION PHASE ECG  

PARAMETERS

Frequency is a fundamental characteristic of oscil-
latory processes ubiquitous in biological systems. Phys-
iological homeostasis is maintained through numerous 
feedback loops, whose operation is accompanied by char-
acteristic oscillations in the parameters under their control. 
Consequently, alterations in the frequency characteristics 
of biosignals can reflect disturbances in homeostatic reg-
ulation. Periodicity in regulatory influences, as manifested 
in the heart’s electrical activity, can be investigated using 
frequency-domain analysis of ECG and HRV signals. In 

addition, intrinsic oscillatory patterns of cardiac electrical 
processes, including impulse conduction, excitation, and 
myocardial repolarization, are of considerable interest.

Some frequency-domain indices are already estab-
lished risk markers (e.g., frequency domain parameters of 
HRV), whereas others remain under investigation for clin-
ical applicability.

Periodic repolarization dynamics (PRD)
In 2014, Rizas et al. proposed a novel risk stratifica-

tion method for post-myocardial infarction (MI) patients, 
grounded in three key premises:
•	 The influence of sympathetic overactivity on myocardi-
al repolarization process.
•	 Proven role of sympathetic stimulation in the pathogen-
esis of life-threatening arrhythmias.
•	 Experimentally proven pattern of sympathetic nerve ac-
tivity manifesting as low-frequency «bursts».

The authors hypothesized that sympathetic modula-
tion of repolarization should manifest as low-frequency 
periodic oscillations of the T-wave axis, termed PRD. PRD 
assessment was based on 20-minute high-resolution ECG 
recordings. A time series of angles between the electrical 
axes of successive T waves - reflecting instantaneous in-
stability of the repolarization vector - was computed, fol-
lowed by frequency transform to quantify low-frequency 
(<0.1 Hz) spectral power (Fig. 3).

Potential confounders were systematically excluded. 
Possible relationship between PRD and HRV was ruled 

out experimentally via fixed-
rate atrial pacing in volunteers, 
which abolished HRV while 
leaving PRD unaffected. The ef-
fect of spontaneous respiration 
was excluded in an animal model 
(anesthetized pigs) using fixed-
rate mechanical ventilation, 
which preserved PRD. The link 
between PRD and sympathetic 
activity was further supported 
by observations of PRD eleva-
tion during tilt-table testing and 
exercise, and PRD reduction fol-
lowing β-adrenergic blockade. 
In the ART study cohort, PRD 
demonstrated prognostic value 
for 5-year mortality. A threshold 
of 5,75°² (upper quartile) was as-
sociated with a nearly threefold 
increase in all-cause and car-
diovascular mortality risk after 
adjustment for clinical history 
and cardiovascular risk factors. 
PRD was also evaluated along-
side T-wave alternans (TWA) in 
the FINCAVAS study, showing 
independent predictive value 
for cardiovascular mortality, in-
cluding among patients without 
detected TWA. Combined use of 
PRD and TWA improved predic-
tion of 6-year all-cause mortality 

Fig. 4. f99 calculation: a - ECG in orthogonal leads and borders of 
«repolarization window», b - repolarization signal (ECG with QRS complexes 
and P waves removed and replaced by zeros), c - repolarization signal energy 
spectrum, d - normalized signal energy curve (0 to 100%). F99 is defined as 
frequency where normalized signal energy reaches 99%.

a
b

c                                                                     d
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[13]. It is worth noting that the pilot study did not directly 
evaluate mortality from fatal VA.

Rizas et al. (2017) conducted the first dedicated 
investigation of PRD as an SCD risk marker in the MA-
DIT-II cohort. Of 854 patients, 506 received ICDs and 348 
received medical therapy. Given that in CHF elevated sym-
pathetic tone is associated with both arrhythmic death and 
pump failure death (non-sudden cardiac death, non-SCD), 
the study endpoints included all-cause mortality, SCD and 
non-SCD. Over a median follow-up of 20,4 months, 53 
SCD cases occurred. After adjustment for clinical history, 
cardiovascular risk factors, therapy, QRS width and LVEF, 
PRD was a significant predictor of SCD across the entire 
cohort. Among medically treated patients, PRD predicted 
SCD, whereas in ICD recipients, it predicted both appro-
priate ICD therapy and non-SCD. The authors noted the 
potential utility of PRD for identifying post-MI patients 
with reduced LVEF who may benefit from prophylactic 
ICD implantation. Study limitations included variability 
in ECG acquisition methods, exclusion of atrial fibrillation 
patients, changes in patient management protocols since 
MADIT-II, and a relatively small sample size [14].

Palacios et al. (2021) obtained further data on the 
prognostic role of PRD in the MUSIC cohort of CHF pa-
tients. Endpoints included SCD and non-SCD. Over the 
follow-up period, there were 53 SCD and 53 non-SCD 
events. PRD thresholds were established at 1,33°² for SCD 
and 1,31°² for non-SCD. SCD cases were significantly 
more common in patients with elevated PRD, whereas no 
significant difference in non-SCD cases was found between 
elevated and normal PRD groups. After adjusting for de-
mographics, clinical history, laboratory parameters, HRV, 
HRT, TWA and Holter monitor findings (non-sustained VT 
and frequent PVCs), elevated PRD remained an indepen-
dent predictor of a nearly twofold higher SCD risk. The 
combination of elevated PRD with abnormal turbulence 
slope or TWA further increased 
SCD risk two- to threefold.

In the discussion, the au-
thors emphasized PRD’s reliabil-
ity for differentiating high- and 
low-risk patients, its prognos-
tic relevance for both SCD and 
pump failure death, and its po-
tential for combination with oth-
er MEI markers. Notably, HRV 
parameters showed no clinically 
significant prognostic value in 
this cohort, and overall among 
traditional risk factors, the most 
influential were CHF functional 
class and LVEF <35% [15].

Fragmentation of repo-
larization (f99 index)
In 2013, Burattini and 

Giuliani proposed an alterna-
tive approach to analyzing the 
frequency structure of repolar-
ization. A comparative study 
of T-wave frequency content in 
healthy individuals and post-

MI patients revealed significant differences. In the latter 
group, an increased number of harmonics was observed in 
the 10-35 Hz range, which the authors interpreted as re-
flecting fragmentation of the repolarization process - the 
appearance of additional electrical oscillations. This can 
be compared to the high-frequency notching and slurring 
in the QRS complex caused by depolarization heterogene-
ity in structurally abnormal myocardium, visible as QRS 
fragmentation on standard ECG or detectable via spectral 
analysis [17]. Given the intrinsic coupling between depo-
larization and repolarization, the similarity of these abnor-
mal patterns supports the proposed hypothesis.

On this theoretical basis, Giuliani et al. (2014) in-
troduced the f99 index, defined as the frequency (in Hz) 
at which the normalized T-wave spectral energy reaches 
99% (Fig. 4). Their study included 108 post-MI patients 
and 47 clinically healthy controls (mean age 45 ± 15 years, 
82% male). On average, f99 values were higher in post-MI 
patients. The best sensitivity and specificity for prior MI 
detection were achieved in leads I (threshold 15 Hz; sensi-
tivity 80%, specificity 77%) and aVL (threshold 17,8 Hz; 
sensitivity 84%, specificity 74%), with the lowest perfor-
mance in leads III and aVF. Averaging f99 across precor-
dial leads yielded better results (sensitivity 81%, specificity 
74%) than averaging across all 12 leads (sensitivity 69%, 
specificity 74%). The authors noted that f99 was robust to 
random fluctuations in T-wave end detection, independent 
of heart rate, and unaffected by spatial dispersion of repo-
larization, making the index promising for evaluating re-
polarization abnormality [18]. However, the pilot study did 
not examine f99 specifically as an arrhythmic risk marker.

Giuliani et al. later evaluated f99’s prognostic value 
for life-threatening VA using the Leiden University data-
base of 170 CHF patients (LVEF <35%) with ICDs. Over 
four years of follow-up from ICD implantation, patients 
underwent exercise testing with ECG recording. Based 

Fig. 5. Calculation of approximate entropy (ApEn) for HRV time series. If pairs 
of neighboring RR intervals (m = 2) are similar and adding next RR interval (m = 
3) gives similar triplets, ApEn is low (system behavior is predictable); conversely, 
if increasing segment length (m = 2 → m = 3) drastically reduces the number of 
similar RR segments, ApEn is high and system behavior is more chaotic.
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on whether ICD therapy occurred during follow-up, pa-
tients were classified into ICD-positive and ICD-negative 
groups, which were similar in clinical characteristics but 
differed in LVEF (31% ± 12% in ICD-positive vs. 39% ± 
13% in ICD-negative). f99 was calculated from the first 
minute of exercise ECG using the previously described 
method. Maximum f99 values (maxF99) were computed 
for 6 precordial, 12 standard, and 3 orthogonal leads, and 
classification performance was assessed via ROC analy-
sis. The highest AUC (0,68), comparable to that of LVEF 
(0,70) in this study, was obtained for orthogonal leads. 
Cross-correlation analysis showed independence between 
maxF99 and LVEF. The authors highlighted f99’s repro-
ducibility, robustness to spatial repolarization dispersion, 
and prognostic value comparable to LVEF - an established 
risk stratification marker [19].

Frequency-domain ECG markers emphasize the im-
portance of a deep physiological understanding for work 
in electrophysiology. The approaches discussed - both the 
hypothesis linking PRD to burst-like sympathetic activity 
and the concept of repolarization fragmentation reflected 
in the spectral characteristics of the T wave - require inves-
tigators not only to possess comprehensive knowledge of 
cardiovascular regulation, myocardial electrophysiology 
and mechanisms of arrhythmogenesis, but also to engage 
in interdisciplinary collaboration with specialists in medi-
cal informatics and biosignal analysis.

NONLINEAR ANALYSIS OF ECG  
PARAMETERS

Among nonlinear indices derived from ECG and 
HRV signals and studied as MEI markers, particular inter-
est lies in those reflecting chaoticity and fractality - prop-
erties directly linked both to the structure and function of 

the cardiac conduction system and myocardium, and to the 
autonomic regulation of the CV system.

A key quantitative measure of chaoticity, estimable 
from finite-length datasets, is entropy. In practice, sever-
al entropy measures are employed, differing in calcula-
tion methods and interpretative focus, including Shannon 
entropy (ShanEn), approximate entropy (ApEn), sample 
entropy (SampEn), fuzzy entropy (FuEn), Rényi entropy 
(RenEn), multiscale entropy (MSE), permutation entropy 
(PE), multiscale permutation entropy (MPE), and others.

For assessing fractal properties of a time series, the 
Hurst exponent is widely used, calculated using methods 
such as rescaled range (R/S) analysis, detrended fluctua-
tion analysis (DFA), or frequency-domain approaches. 
For biomedical signals - which are typically nonstation-
ary and noisy - DFA is a preferred method, as it removes 
the influence of local trends. Limitations of DFA include 
the assumption of monofractality (self-similarity at a sin-
gle scaling factor) and the requirement for relatively long 
data series (several hundred points). For shorter segments, 
frequency-domain methods or DFA with modified detrend-
ing can be applied. Moreover, multiscale entropy methods 
(MSE and related) are also capable of incorporating the 
fractal properties of the analyzed signals.

Entropy and fractal properties of HRV
The pioneering application of entropy estimation in 

electrocardiology is attributed to S. Pincus, developer of 
the ApEn method [20] (Fig. 5), who described its use in 
cardiovascular disease diagnostics [21]; J. Richman and J. 
Moorman, who developed the improved SampEn method 
[22]; and A. Goldberger, M. Costa, and C.-K. Peng, who 
created the MSE method [23].

Concurrently, the concept of the fractal nature of 
CV system activity was being established. T. Musha and 

M. Kobayashi first described the HRV signal 
spectrum characteristic of fractal systems - the 
so-called pink noise [24]. A. Goldberger et al. 
identified the relationship between conduction 
system architecture and fractal spectral proper-
ties of the depolarization process (Fig. 6) [25]. 
C.-K. Peng and A. Goldberger developed DFA 
as a key tool for fractal analysis (Fig. 7) [26].

Studies of nonlinear HRV analysis in the 
context of SCD can be broadly categorized 
into those addressing long-term risk stratifica-
tion (identifying high-risk patients in specific 
cohorts, e.g., post-MI) and those addressing 
short-term prediction (anticipating life-threat-
ening VA episodes before their onset). These 
two settings differ substantially in the temporal 
dynamics of nonlinear indices.

Long-term prognostic studies date back 
to the 1990s-2000s. In an early study by Voss 
et al. (1996; n = 26 post-MI patients, 16 with 
prior life-threatening VA or SCD), entropy in-
dices were lower in the high-risk group, with 
predictive accuracy around 75%. In the DI-
AMOND-MI cohort study by Huikuri et al. 
(2000; 446 post-MI patients with LVEF <35%, 
mean follow-up 685 days, 75 SCD events), a 
reduced short-term fractal scaling exponent α₁ 

Fig. 6. a - fractal (self-similar) patterns in a spectrum obtained 
by wavelet analysis of RR time series of a healthy person. b - loss 
of fractality, increased rigidity and periodicity in a patient with 
obstructive sleep apnea. Adapted from [44].

a

b
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< 0,75, reflecting short-range RR interval correlation, was 
a significant SCD risk predictor (hazard ratio (HR) 2,5 in 
univariate analysis and 1,4 after clinical adjustment), out-
performing established HRV measures (SDNN, LF, HF) 
[27]. Similarly, in a prospective study by Mäkikallio et 
al. (2001; random sample of 325 subjects > 65 years from 
a social insurance registry, 10-year follow-up, 29 SCD 
events), α₁ < 1,0 was the strongest predictor (HR 4,3 after 
adjustment; AUC 0,75), surpassing SDNN [28].

More recent studies include Rohila and Sharma 
(2020; 240 random 5-minute Holter segments from 20 
SCD patients in the SDDB database), which showed sig-
nificantly lower values of five entropy measures (Samp-
En, PEn, etc.) and α₁ DFA in the SCD group. Using 
these in a random forest classifier yielded an accuracy of 
91,67% [29].

Yan et al. (2023; 22 Holter recordings from SCD 
patients in SDDB and AHADB databases) found reduced 
HRV SampEn to be a significant, though less powerful, 
SCD risk marker (AUC 0,66) compared to conventional 
HRV parameters (SDNN, RMSSD, LF) [30].

A large prospective study by Hernesniemi et al. 
(2024; 2794 1-minute ECGs from the FINCAVAS cohort, 
median follow-up 8,3 years, 83 SCD events) demonstrated 
that DFA with nonlinear detrending identified a significant 
correlation between reduced fractal HRV properties (lower 
α₁) and increased SCD risk (HR 2,4 per 1 SD), whereas 
differences in conventional HRV parameters were not sig-
nificant. This study stands out for its large sample size and 
for proposing a spectral HRV 
analysis method applicable to 
ultrashort (1-minute) recordings, 
potentially enabling use in wear-
able devices [31].

Across long-term studies, 
reduced entropy and fractal mea-
sures in high-risk SCD patients 
is a notably consistent finding. 
Limitations include small and 
clinically heterogeneous sam-
ples in most reports. Future 
research should explore com-
bined models incorporating both 
fractal and entropy measures 
in well-characterized cohorts, 
to facilitate validation, synthe-
sis, and translation into clinical 
practice.

The first systematic studies 
on short-term SCD prediction 
using nonlinear HRV analy-
sis date to the 2010s. A notable 
series by Ebrahimzadeh et al. 
(2014-2019), using the MIT-
BIH database (35-40 Holter 
recordings with VF, 18 control 
sinus rhythm recordings), de-
veloped and refined prediction 
methods combining established 
linear HRV measures (time- and 
frequency-domain) with novel 

nonlinear indices (Poincaré plot cloud width and length, α 
DFA) and machine learning models (multilayer perceptron, 
support vector machines, k-nearest neighbors, mixture of 
experts). These approaches achieved VF prediction up to 
13 minutes before onset [32-34]. Interestingly, α₁ DFA was 
significantly higher before VF onset (1,12 vs. 0,83 in con-
trols), in contrast to findings in long-term SCD risk studies. 
In an early work [32], reported sensitivity was 83,75% but 
specificity only 0,159%, likely due to calculation error or 
classifier overfitting for sensitivity at the expense of speci-
ficity; later works did not replicate this issue.

Shi et al. (2020), also using MIT-BIH data (20 VF 
recordings, 18 controls), applied ensemble empirical 
mode decomposition (EEMD) to HRV data. Classifica-
tion based on entropy measures and k-nearest neighbors 
achieved higher predictive accuracy in the first 2-minute 
interval before VF (94,7%) than a model using only lin-
ear parameters (86,8%), and the combined model reached 
96,1%. The best-performing entropy measures were FuEn 
and improved MPE. Significant parameter changes were 
detectable up to 14 minutes before VF onset. The EEMD 
method’s adaptability and noise robustness make it prom-
ising for wearable device applications [35].

Yang et al. (2023) reported a major advance in ear-
ly SCD detection. They introduced a novel nonlinear 
multiscale index, Sv, derived from Poincaré plots. Using 
MIT-BIH data (20 VF Holter recordings, 18 without VA), 
a combined model incorporating Sv, ShanEn, and SDNN 
with an SVM classifier achieved 91,22% predictive accu-

Fig. 7. Detrended fluctuation analysis (DFA) method. a - algorithm for DFA 
calculation: calculation of root-mean-square (RMS) residual variance (deviation 
from local trend) at various time scales, plot of residual variance against time 
scale and the regression approximating the variance-scale relation. Slope of 
regression line reflects the strength of self-similarity at various time scales 
(fractality). b - examples of signals with various level of self-similarity: low α 
signifies prevalence of small-scale oscillations and lack of longer-range patterns 
(chaotic behavior), α close to 1 reflects a balanced relation between amplitude 
and scale of oscillations (fractal-like behavior), high α demonstrates prevalence 
of long-range patterns over small-scale variation (rigid behavior, long-term 
«memory»: of the signal). Adapted from [45].

a

                                                                                        b
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racy 60-70 minutes before SCD - a fivefold improvement 
in lead time compared to prior studies [36].

These short-term prediction studies benefit from the 
standardization inherent to public ECG databases but are 
limited by small sample sizes (35-40 recordings). Such 
methods may be particularly useful in ECG monitoring de-
vices for high cardiovascular risk patients. Future directions 
include evaluating EEMD and combined DFA/Sv models 
on ECG recordings of varying quality and duration, and in 
diverse clinical populations, to define practical applicability.

Entropy and fractal properties of repolarization
An original approach to nonlinear ECG analysis was 

proposed by DeMazumder et al. (2016) [37]. The authors 
hypothesized that the degree of repeatability in ventricular 
repolarization patterns, assessed via QT interval variabil-
ity, reflects the functional state of the body’s regulatory 
systems. They introduced the repolarization entropy index 
(proprietary term EntropyXQT), an enhanced version of 
SampEn designed to assess the complexity and repeat-
ability of ventricular repolarization patterns. This index is 
derived from QT interval variability analysis, thereby cap-
turing embedded periodic oscillations in interval duration. 
Due to its calculation method, EntropyXQT can be con-
sidered a «hybrid» index, reflecting both complexity and 
fractality (scale invariance) of cardiac dynamics.

The prognostic value of EntropyXQT for life-threat-
ening VA was assessed in the PROSe-ICD study [38]. 
The primary endpoint was the first appropriate ICD ther-
apy delivery for VT or VF, the secondary endpoint was a 
composite of the primary and all-cause mortality. Over a 
mean follow-up of 45 ± 24 months, 134 patients reached 
the primary endpoint and 300 reached the secondary end-
point (166 deaths without prior ICD therapy). EntropyX-
QT’s predictive value was evaluated in two models: the 
Seattle Heart Failure Model (SHFM) [39] and a baseline 
model incorporating clinical and laboratory variables plus 
established ECG measures, including HRV, QRS dura-
tion, late potentials, and repolarization indices (QTc, QT/

RR, QTVi). High EntropyXQT values (fifth quintile) were 
independently associated with more than a threefold in-
creased risk of ICD intervention, even after adjustment for 
30 additional parameters. The prognostic value of Entro-
pyXQT was independent of other repolarization indices, 
including QTVi. Adding EntropyXQT to the baseline 
model improved net reclassification by 31-36%, and add-
ing it to the SHFM improved reclassification by 40%. The 
authors noted EntropyXQT’s potential utility for primary 
prevention of SCD, its robustness to noise, its ease of cal-
culation from short ECG recordings, and its consistency 
with prior research on entropy measures of cardiac activity 
for predicting pathological states [40, 41].

A noteworthy contribution comes from M. Muru-
gappan et al. (2020), who focused on nonlinear analysis 
of the R-Tend segment for short-term SCD prediction, 
using the MIT-BIH database (18 Holter recordings with 
VF, 18 controls without VA). For each of the five consec-
utive 1-minute segments preceding VF onset, they calcu-
lated ApEn, SampEn, the largest Lyapunov exponent and 
the Hurst exponent - thus incorporating both entropy and 
fractal measures. Classification was performed using sub-
tractive fuzzy clustering, neuro-fuzzy clustering and SVM. 
The best results were obtained with SVM: on the fifth min-
ute before VF onset, predictive accuracy reached 100% for 
SampEn, 98,68% for ApEn, 97,37% for the largest Lya-
punov exponent, and 94,74% for the Hurst exponent. The 
remarkably high accuracy for ApEn and SampEn contrasts 
with their more modest performance in HRV-based short-
term SCD prediction. A major strength of the study is the 
novelty of analyzing the R-Tend segment, while its main 
limitation is the small sample size dictated by the MIT-BIH 
SCD database [42].

Of particular interest is the dynamic behavior of non-
linear HRV indices in long-term risk versus immediate 
pre-SCD states. While some entropy measures decrease 
over the long term, others exhibit a sharp rise immediately 
before fatal VA onset. Notably, for repolarization entropy, 
such a paradox was not observed. Clinically, these patterns 
may reflect two complementary pathological processes:

Chronic phase (entropy decrease): loss of the «healthy 
chaos» in heart rhythm characteristic of effective autonom-
ic regulation [43], consistent with the depletion of adaptive 
reserves seen in CHF patients or those with prior MI.

Acute phase (entropy increase in HRV and repo-
larization): manifestation of critical MEI and increasing 
electrical heterogeneity, creating a substrate for fatal ar-
rhythmias - consistent with the theory of «critical slowing 
down» in complex systems approaching a transition state.

Importantly, this acute-phase rise was most promi-
nent for multiscale and adaptive measures (e.g., IMPE, 
FuEn) of HRV, whereas traditional single-scale measures 
(ApEn, SampEn) of HRV were less informative. For repo-
larization entropy, ApEn and SampEn also rose significant-
ly, likely reflecting disorganization of ventricular electrical 
processes rather than changes in autonomic modulation.

A similar biphasic pattern was observed for fractal 
characteristics:
•	 Optimal regulation (α DFA ≈ 1,0): represents balanced 
vagal-sympathetic interaction and nested regulatory loops 
of the CV system, producing a “pink noise” spectrum.

Fig. 8. Colors of noise. 1 - white noise characteristic 
of random processes with no autocorrelation. 2 - 
pink “fractal” 1/f noise characteristic of normally 
functioning systems containing multiple hierarchical 
levels of control and balanced autocorrelation. 3 - 
Brownian (“brown” or “red”) noise characteristic 
of systems with strong dependence on past states and 
strong autocorrelation. Adapted from [46].
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•	 Long-term risk (α → 0,5; high EntropyXQT due to loss 
of self-similar oscillations): indicates disintegration of reg-
ulatory mechanisms, loss of correlations, and a random re-
sponse pattern (“white noise” spectrum).
•	 Immediate SCD threat (α >1,5): may reflect sympa-
thetic hyperactivation with dominance of low-frequency 
oscillations, increased «memory» and rigidity of the sys-
tem, locking it onto a trajectory toward pathological state 
(«brown noise» spectrum) (Fig. 8).

CONCLUSION

Modern approaches to the risk stratification of sud-
den cardiac death and life-threatening ventricular arrhyth-
mias extend beyond traditional ECG markers, offering 
novel methods for assessing myocardial electrical insta-
bility. The groups of novel markers reviewed here reflect 
different aspects of arrhythmogenesis.

The key advantage of GEH vector parameters lies in 
their ability to quantify the spatiotemporal heterogeneity 
of depolarization and repolarization, which is particularly 
important in patients with both ischemic and non-ischemic 
cardiomyopathies. Interpretation of these markers requires 
careful consideration of the underlying myocardial pathol-
ogy, given the differences in prognostic significance across 
conditions.

The distinctive value of frequency-domain MEI 
markers stems from their capacity to reflect disturbances 
in autonomic regulation and electrical heterogeneity of re-
polarization - both of which are critical components of ar-
rhythmogenesis in post-MI and heart failure patients. Clin-
ical implementation of frequency-based markers requires 
standardization of ECG acquisition and analysis protocols.

Nonlinear MEI markers - encompassing entropy 
and fractal properties of HRV and specific ECG compo-

nents - represent a novel conceptual framework for un-
derstanding arrhythmogenesis, framing it as a multi-level 
collapse of the cardiovascular system’s adaptive potential, 
a breakdown in the balance between chaos and order, and a 
simplification of regulatory mechanisms, where excessive 
rigidity of control (sympathetic hyperactivation) coexists 
with micro-level electrical fragmentation. This perspective 
is new and potentially highly promising, but it demands 
multidisciplinary collaboration between cardiologists, 
electrophysiologists, physicists, mathematicians and com-
puter science specialists.

The challenges pertaining to research of novel MEI 
markers are typical for any rapidly evolving field in the 
process of evidence accumulation and synthesis: consider-
able heterogeneity of study populations, lack of standard-
ized acquisition protocols for the studied indices, and, in 
many cases, contradictory results. These issues are likely 
to be temporary and should be resolved as the field pro-
gresses toward integrating findings and developing practi-
cal clinical applications.

Promising directions include exploring combined 
marker models from different groups using machine learn-
ing for long-term arrhythmic risk stratification, as well as 
identifying short-term SCD predictors in high cardiovascu-
lar risk populations - particularly through long-term moni-
toring, wearable medical electronics, and on-demand ECG 
analysis.

In summary, novel ECG MEI markers do not replace 
but rather complement traditional approaches, providing a 
deeper understanding of arrhythmogenesis pathophysiolo-
gy and forming a basis for more flexible SCD prevention 
strategies. Future research will likely focus on validating 
these indices in large prospective cohorts and developing 
standardized algorithms for their practical clinical use.

REFERENCES

1.	 Stepanov DA, Tatarinova AA. ECG-based risk stratifi-
cation of sudden cardiac death and life-threatening ventric-
ular arrhythmias. Journal of Arrhythmology. 2024;31(1): 
77-91. (In Russ.). https://doi.org/10.35336/VA-1213.
2.	 Nonlinear Biomedical Signal Processing / еd. by Metin 
Akay. Vol. 2. Dynamic Analysis and Modelling. New York: 
IEEE; 2001.
3.	 Nemirko AP, Manilo LA, Kalinichenko AN. Mathemat-
ical analysis of biomedical signals and data. Moscow 2017. 
(In Russ.) ISBN 978-5-9221-1720-3.
4.	 Wilson FN, Macleod AG, Barker PS, et al. The determi-
nation and the significance of the areas of the ventricular 
deflections of the electrocardiogram. Am Heart J. 1934;10: 
46-61.
5.	 Tereshchenko LG, Cheng A, Fetics BJ, et al. Ventricular 
arrhythmia is predicted by sum absolute QRST integral but 
not by QRS width. J Electrocardiol. 2010;43(6): 548-52. 
https://doi.org/10.1016/j.jelectrocard.2010.07.013.
6.	 Tereshchenko LG, Cheng A, Fetics BJ, et al. A new 
electrocardiogram marker to identify patients at low risk 
for ventricular tachyarrhythmias: sum magnitude of the ab-
solute QRST integral. J Electrocardiol. 2011;44: 208-16. 
https://doi.org/10.1016/j.jelectrocard.2010.08.012.
7.	 Tereshchenko LG, McNitt S, Han L, et al. ECG mark-
er of adverse electrical remodeling post-myocardial in-

farction predicts outcomes in MADIT II study. PLoS 
One. 2012;7(12): e51812. https://doi.org/10.1371/journal.
pone.0051812.
8.	 Oehler A, Feldman T, Henrikson CA, et al. QRS-T an-
gle: a review. Ann Noninvasive Electrocardiol. 2014;19: 
534-42. https://doi.org/10.1111/anec.12206.
9.	 Perez-Alday EA, Bender A, German D, et al. Dynamic 
predictive aCCC Curacy of electrocardiographic biomark-
ers of sudden cardiac death within a survival framework: 
The Atherosclerosis Risk in Communities (ARIC) study. 
BMC Cardiovasc Disord. 2019;19(1): 255. https://doi.
org/10.1186/s12872-019-1234-9.
10.	 Waks JW, Sitlani CM, Soliman EZ, et al. Global Elec-
tric Heterogeneity risk score for prediction of sudden cardi-
ac death in the general population: the Atherosclerosis Risk 
in Communities (ARIC) and Cardiovascular Health (CHS) 
Studies. Circulation. 2016;133(23): 2222-34. https://doi.
org/10.1161/CIRCULATIONAHA.116.021306.
11.	 Waks JW, Hamilton C, Das S, et al. Improving sud-
den cardiac death risk stratification by evaluating electro-
cardiographic measures of global electrical heterogeneity 
and clinical outcomes among patients with implantable 
cardioverter-defibrillators: rationale and design for a ret-
rospective, multicenter, cohort study. J Interv Card Elec-
trophysiol. 2018;52(1): 77-89. https://doi.org/10.1007/



REVIEWS 	 e11

JOURNAL OF ARRHYTHMOLOGY, № 3 (121), 2025

s10840-018-0342-2.
12.	 Waks JW, Haq KT, Tompkins C, et al. Competing risks 
in patients with primary prevention implantable cardio-
verter-defibrillators: Global Electrical Heterogeneity and 
Clinical Outcomes study. Heart Rhythm. 2021;18(6): 977-
86. https://doi.org/10.1016/j.hrthm.2021.03.006.
13.	 Rizas KD, Nieminen T, Barthel P et al. Sympathetic ac-
tivity-associated periodic repolarization dynamics predict 
mortality following myocardial infarction. J Clin Invest. 
2014;124(4): 1770-80. https://doi.org/10.1172/JCI70085.
14.	 Rizas KD, McNitt S, Hamm W, et al. Prediction of 
sudden and non-sudden cardiac death in post-infarction 
patients with reduced left ventricular ejection fraction by 
periodic repolarization dynamics: MADIT-II substudy. Eur 
Heart J. 2017;38(27): 2110-8. https://doi.org/10.1093/eu-
rheartj/ehx161.
15.	 Palacios S, Cygankiewicz I, Bayés de Luna A, et al. 
Periodic repolarization dynamics as predictor of risk for 
sudden cardiac death in chronic heart failure patients. Sci 
Rep. 2021;11(1): 20546. https://doi.org/10.1038/s41598-
021-99861-1.
16.	 Burattini L, Giuliani C. T‐wave frequency content 
evaluation in healthy subjects and patients affected by 
myocardial infarction. In: Signal Processing: New Re-
search (ed. Naik GR). NY 2013: 79-93.
17.	 Langner PH, Jr., Geselowitz DB, Mansure FT, et al. 
High-frequency components in the electrocardiograms 
of normal subjects and of patients with coronary heart 
disease. Am Heart J. 1961;62(6): 746-55. https://doi.
org/10.1016/0002-8703(61)90661-5.
18.	 Giuliani C, Agostinelli A, Fioretti S, et al. Abnormal 
repolarization in the acute myocardial infarction patients: 
a frequency-based characterization. Open Biomed Eng J. 
2014;8: 42-51. https://doi.org/10.2174/187412070140801
0042.
19.	 Giuliani C, Swenne CA, Man S, et al. Predictive pow-
er of f99 repolarization index for the oCCC Currence of 
ventricular arrhythmias. Ann Noninvasive Electrocardiol. 
2016;21(2): 152-60. https://doi.org/10.1111/anec.12274.
20.	 Pincus SM. Approximate entropy as a measure of sys-
tem complexity. Proc Natl Acad Sci U S A. 1991;88(6): 
2297-301. https://doi.org/10.1073/pnas.88.6.2297.
21.	 Pincus SM. Approximate entropy in cardiology. 
Herzschr Elektrophys. 2000;11: 139-50. https://doi.
org/10.1007/s003990070033.
22.	 Richman JS., Moorman JR. Physiological time-series 
analysis using approximate entropy and sample entropy. 
Am J Physiol Heart Circ Physiol. 2000;278(6): 2039-49. 
https://doi.org/10.1152/ajpheart.2000.278.6.H2039.
23.	 Costa M, Goldberger AL, Peng CK. Multiscale entro-
py analysis of complex physiologic time series. Phys Rev 
Lett. 2002;89(6): 068102. https://doi.org/10.1103/Phys-
RevLett.89.068102.
24.	 Kobayashi M, Musha T. 1/f fluctuation of heartbeat pe-
riod. IEEE Trans Biomed Eng. 1982;29(6): 456-7. https://
doi.org/10.1109/TBME.1982.324972.
25.	 Goldberger AL. Fractal electrodynamics of the heart-
beat. Ann N Y Acad Sci. 1990;591: 402-9. https://doi.
org/10.1111/j.1749-6632.1990.tb15104.x.
26.	 Peng CK, Havlin S, Stanley HE, et al. Quantification 
of scaling exponents and crossover phenomena in non-

stationary heartbeat time series. Chaos. 1995;5(1): 82-7. 
https://doi.org/10.1063/1.166141.
27.	 Huikuri HV, Mäkikallio TH, Peng CK, et al. Fractal 
correlation properties of R-R interval dynamics and mortal-
ity in patients with depressed left ventricular function after 
an acute myocardial infarction. Circulation. 2000;101(1): 
47-53. https://doi.org/10.1161/01.cir.101.1.47.
28.	 Mäkikallio TH, Huikuri HV, Mäkikallio A, et al. 
Prediction of sudden cardiac death by fractal analysis of 
heart rate variability in elderly subjects. J Am Coll Cardi-
ol. 2001;37(5): 1395-402. https://doi.org/10.1016/s0735-
1097(01)01171-8.
29.	 Rohila A, Sharma A. Detection of sudden cardiac death 
by a comparative study of heart rate variability in normal 
and abnormal heart conditions. J Appl Biomed. 2020;40(3): 
1-15. https://doi.org/10.1016/j.bbe.2020.06.003.
30.	 Yan SP, Song X, Wei L, et al. Performance of heart rate 
adjusted heart rate variability for risk stratification of sud-
den cardiac death. BMC Cardiovasc Disord. 2023;23(1): 
144. https://doi.org/10.1186/s12872-023-03184-0.
31.	 Hernesniemi JA, Pukkila T, Molkkari M, et al. Predic-
tion of sudden cardiac death with ultra-short-term heart rate 
fluctuations. JACCC C Clin Electrophysiol. 2024;10(9): 
2010-20. https://doi.org/10.1016/j.jacep.2024.04.018.
32.	 Ebrahimzadeh E, Pooyan M, Bijar A. A novel ap-
proach to predict sudden cardiac death (SCD) using non-
linear and time-frequency analyses from HRV signals. 
PLoS One. 2014;9(2): e81896. https://doi.org/10.1371/
journal.pone.0081896
33.	 Ebrahimzadeh E, Fayaz F, Ahmadi F, et al. Linear and 
nonlinear analyses for detection of sudden cardiac death 
(SCD) using ECG and HRV signals. Trends Res. 2018;1: 
1-8. https://doi.org/10.15761/tr.1000105.
34.	 Ebrahimzadeh E, Foroutan A, Shams M, et al. An opti-
mal strategy for prediction of sudden cardiacdeath through 
a pioneering feature-selection approach from HRV signal. 
Comput Methods Programs Biomed. 2019;169: 19-36. 
https://doi.org/10.1016/j.cmpb.2018.12.001.
35.	 Shi M, He H, Geng W, et al. Early detection of sudden 
cardiac death by using ensemble empirical mode decom-
position-based entropy and classical linear features from 
heart rate variability signals. Front Physiol. 2020;11: 118. 
https://doi.org/10.3389/fphys.2020.00118.
36.	 Yang J, Sun Z, Zhu W, et al. Intelligent prediction of sud-
den cardiac death based on multi-domain feature fusion of 
heart rate variability signals. EURASIP J Adv Signal Process. 
2023;32: 1-15. https://doi.org/10.1186/s13634-023-00992-6.
37.	 DeMazumder D, Limpitikul WB, Dorante M, et al. 
Entropy of cardiac repolarization predicts ventricular ar-
rhythmias and mortality in patients receiving an implant-
able cardioverter-defibrillator for primary prevention of 
sudden death. Europace. 2016;18(12): 1818-28. https://
doi.org/10.1093/europace/euv399.
38.	 Cheng A, Dalal D, Butcher B, et al. Prospective Obser-
vational Study of Implantable Cardioverter‐Defibrillators 
in primary prevention of sudden cardiac death: study de-
sign and cohort description. J Am Heart Assoc. 2013;2(1): 
e000083. https://doi.org/10.1161/JAHA.112.000083.
39.	 Levy WC, Mozaffarian D, Linker DT, et al. The Seattle 
Heart Failure Model: prediction of survival in heart failure. 
Circulation. 2006;113: 1424-33. https://doi.org/10.1161/



e12	 REVIEWS 

JOURNAL OF ARRHYTHMOLOGY, № 3 (121), 2025

CIRCULATIONAHA.105.584102.
40.	 DeMazumder D, Lake DE, Cheng A, et al. Dynamic 
analysis of cardiac rhythms for discriminating atrial fibril-
lation from lethal ventricular arrhythmias. Circ Arrhythm 
Electrophysiol. 2013;6: 555-61. https://doi.org/10.1161/
CIRCEP.113.000034.
41.	 Perkiomaki JS, Couderc JP, Daubert JP, et al. Tempo-
ral complexity of repolarization and mortality in patients 
with implantable cardioverter defibrillators. Pacing Clin 
Electrophysiol. 2003;26: 1931-6. https://doi.org/10.1046/
j.1460-9592.2003.00298.x.
42.	 Murugappan M, Murugesan L, Jerritta S, et al. Sudden 
cardiac arrest (SCA) prediction using ECG morphological 
features. Arab J Sci Eng. 2020;46(2): 947-61. https://doi.
org/10.1007/s13369-020-04765-3.
43.	 Buchman TG. Nonlinear dynamics, complex systems, 

and the pathobiology of critical illness. Curr Opin Crit 
Care. 2004;10(5): 378-82. https://doi.org/10.1097/01.CCC 
Cx.0000139369.65817.b6.
44.	 Ivanov PCh, Rosenblum MG, Peng CK, et al. Scal-
ing and universality in heart rate variability distributions. 
Physica A. 1998;249: 587-93. https://doi.org/10.1016/
s0378-4371(97)00522-0.
45.	 Rigoli LM, Lorenz T, Coey C, et al. Co-actors exhib-
it similarity in their structure of behavioural variation that 
remains stable across range of naturalistic activities. Sci 
Rep. 2020;10(1): 6308. https://doi.org/10.1038/s41598-
020-63056-x.
46.	 The Colors of Noise. Wikimedia Commons, 2015. 
ACCC Cessed 2025-08-02. Available from https://com-
mons.wikimedia.org/wiki/File:The_Colors_of_Noise.png.



REVIEWS 	 e13

JOURNAL OF ARRHYTHMOLOGY, № 3 (121), 2025



e14	 REVIEWS 

JOURNAL OF ARRHYTHMOLOGY, № 3 (121), 2025


