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Among studies addressing ECG-based risk stratification for sudden cardiac death and life-threatening ventricular
arrhythmias, novel approaches to ECG data analysis and derived markers of myocardial electrical instability are of par-
ticular interest. Notably, metrics obtained through vector-based, frequency-domain, and nonlinear ECG analysis have
demonstrated significant value as predictors of high-risk ventricular arrhythmias and sudden cardiac death.
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Sudden cardiac death (SCD) remains one of the most
pressing challenges in contemporary healthcare. Accord-
ing to current understanding, its most common cause is
the occurrence of life-threatening ventricular arrhythmias
(VA), including sustained ventricular tachycardia (VT) and
ventricular fibrillation (VF).

The modern approach to VA research considers a
comprehensive “arrhythmic profile” comprising the ar-
rhythmic substrate, determined by the underlying cardiac
disease, clinical, electrocardiographic, and electrophysio-
logical characteristics (including the precipitating (trigger)
factors), and ECG-derived markers of myocardial electrical
instability (MEI). ECG-based MEI markers can reflect var-
ious mechanisms of arrhythmogenesis - both substrate-re-
lated and trigger-related, and are intended to improve the
prediction of life-threatening VA.

A recent review dedicated to ECG MEI markers pro-
posed their classification into two groups: established and
novel markers. The first group markers are widely recog-
nized by researchers and clinicians, have been extensively
studied (including meta-analyses), and in some cases in-
corporated into clinical guidelines [1]. Meanwhile, novel
markers enabled by advances in information technologies
and computational power allow extraction of previously
inaccessible ECG information. As such, novel ECG mark-
ers warrant further investigation to evaluate their clinical
applicability.

The aim of the present review is to analyze studies
focusing on selected novel ECG MEI markers as predictors
of life-threatening VA and SCD, examining the underlying
hypotheses, methodological aspects of their assessment,
and nuances in clinical interpretation.

Table 1.
Strategy for searching publications in scientometric databases for the period 2014-2025
Language S;z:rlcsh Keyword combinations
(SCD OR Sudden cardiac death OR Sudden arrhythmic death) AND (ECG
Main OR Electrocardiography OR Electrocardiographic) AND (New OR Novel)
AND (Markers OR Predictors)
PubMed, (Ventricular AND (Arrhythmia OR Dysrhythmia)) AND (ECG OR
. Google Clarifying Electrocardiography OR Electrocardiographic) AND (New OR Novel)
English Scholar, AND (Markers OR Predictors)
Scopus (SCD OR Sudden cardiac death OR Sudden arrhythmic death) AND
Clarifying (Entropy OR Nonlinear dynamics OR Frequency OR Transform OR <no-
TIOJTHUTENBHBIC YTOUHSIONIHNE KIIIOUEBBIC CIIOBA™>)
Clarifying <HasBanue 3a6oneBanus> AND <Hazsanue noBoro OKI'-mapkepa>
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This review covers research published between 2015
and 2025. Core search strategy is presented in Table 1.
Within the scope of this work, the novel ECG MEI markers
are categorized into three groups based on their approach
to analysis of recorded ECG signal and derived data:

Analysis of diagnostically relevant parameters di-
rectly measured from the ECG. Here, the temporal dynam-
ics of quantitative indices are evaluated and correlated with
VA/SCD risk. Of particular interest is a set of novel vec-
torcardiographic (VCG) parameters collectively termed
Global Electrical Heterogeneity (GEH) [5-12]:

» Spatial QRST angle - the 3D angle between the depo-
larization and repolarization vector loops, analogous to
the well-known frontal QRST angle, a recognized MEI
marker.

* Spatial ventricular gradient (SVG) vector magnitude
and sum absolute QRST integral (SAI QRST) - indices
reflecting heterogeneity in myocardial depolarization and
repolarization.

Frequency-domain analysis of ECG parameters re-
lated to ventricular repolarization. This includes time-fre-
quency transformation of time series of angles between
successive T-wave axes, or direct analysis of T-wave fre-
quency content. Parameters are assessed both relative to
threshold values and as trends. Two frequency-based ECG
markers are of particular interest:

e Periodic Repolarization Dynamics (PRD) - low-fre-
quency (<0.1 Hz) power spectral density of a time series of
angles between successive T-wave axes, evaluated from a
20-minute ECG recording [13-15].

* 199 index - the frequency at which the nor-
malized spectral energy of the T wave reaches
99% [16, 18, 19].

Nonlinear analysis of ECG parameters
(RR, QT intervals). This approach assesses the
presence and degree of nonlinear components
against deterministic and stochastic compo-
nents of a time series. Notable nonlinear ECG
markers include entropy-based measures (e.g.,
heart rate variability (HRV) entropy, repolar-
ization entropy) and fractal methods such as
detrended fluctuation analysis (DFA):

* Combinations of linear (statistical and fre-
quency-domain) and nonlinear (entropy-based,
fractal) HRV indices, analyzed using machine
learning algorithms (e.g., k-nearest neighbors,
support vector machines) for risk stratification
or prediction of VA/SCD [27-36].

* Nonlinear indices of the repolarization
phase calculated from sequences of selected
ECG intervals [37, 42].

PROPERTIES OF LINEAR v
AND NONLINEAR SYSTEMS
Key properties of linear systems include Z

additivity (the system’s response to a com-
posite input equals the sum of its responses to
each component), homogeneity (the system’s
response is proportional to the input magni-
tude), and invariance (temporal changes in the
input produce corresponding temporal changes
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in the output). These properties significantly simplify the
study, modeling, and prediction of linear system behavior.

In contrast, the defining feature of nonlinear systems,
as the name implies, is the absence of these properties,
enabling the emergence of phenomena such as chaotic
behavior (high sensitivity to initial conditions), multista-
bility (presence of multiple stable states), emergence
(appearance of properties absent in individual elements),
scale invariance and self-similarity (retention or repetition
of structural patterns across scales), temporal evolution of
states, self-organization, and adaptability.

Such properties complicate the investigation and pre-
diction of nonlinear system behavior considerably. Howev-
er, by employing numerical measures of chaoticity - such
as entropy, Lyapunov exponents, fractal dimension, phase
portraits, and others - it is possible to assess certain prop-
erties of a dynamic system from its time series, obtaining
important prognostic parameters.

NONLINEAR AND FRACTAL PROPERTIES
OF THE CARDIOVASCULAR SYSTEM

Multiple levels of organization and richness of com-
ponent interactions that inherently confer nonlinear behav-
ior characterize biological systems. The cardiovascular
(CV) system is no exception, exhibiting nonlinear proper-
ties at all organizational levels: from the single myocardio-
cyte (dependence of response to a stimulus on the current
phase of the action potential), to the heart as an organ (loss
of Frank-Starling law linearity in pathologically elevated
preload), to the CV system as a whole (complex neurohor-
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Fig. 1. GEH parameters: spatial QRST angle between QRS and T
wave loops in three-dimensional space.
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monal regulation of blood pressure and heart rate mediated
by feedback loops).

Another important property of many biological sys-
tems is fractality - self-similarity and recurrence across
different scales. In the CV system, this property manifests
both structurally and functionally. Examples include frac-
tal-like branching of the conduction system and the hier-
archically interconnected operation of feedback control
loops from cellular to systemic level.

CV biosignals (ECG, HRV and others) under certain
conditions can be viewed as generated by deterministic
chaos, where apparently irregular fluctuations conceal de-
terministic nonlinear components [2, 3].

The dynamic system generating these signals evolves
over time in such a way that current-state analysis enables
forecasting of future state, such behavior known as itera-
tive. This forms the basis for studying and predicting phys-
iological system dynamics using a set of nonlinear param-
eters measured at the present or prior time points.

It can therefore be assumed that the nonlinear, dynam-
ic, iterative and fractal nature of processes within the CV
system determines the properties of the biosignals it gen-
erates. While nonlinear system behavior can be described
using linear methods in a process known as linearization,
this requires the system to be near an equilibrium point - for
example, the analysis of resting ECG recordings. These con-
straints support the rationale for exploring novel MEI mark-
ers obtained via nonlinear analysis. Nonlinear indices offer
greater precision and reliability in extracting information

CAUz

Fig. 2. GEH parameters: SVG vector (sum of QRS and T vectors in
three-dimensional space) and its scalar analog SAI (total area under

ORST curve).
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from signals originating from inherently chaotic, dynamic
sources, despite their increased computational complexity.

ANALYSIS OF DIRECTLY MEASURED ECG
PARAMETERS

Numerous temporal and amplitude-based parame-
ters can be directly measured from the raw ECG signal.
This group includes various intervals, many of which are
already recognized as established markers of myocardial
electrical instability, as well as VCG features (vectors, an-
gles, areas) that have yielded several novel MEI markers.

The assessment of myocardial electrical activity
and its spatiotemporal dynamics in normal and patholog-
ical states is of particular interest for stratifying the risk
of life-threatening VA and SCD. These dynamics can be
described geometrically in terms of vectors, angles, and ar-
eas. Well-known examples of such descriptors include the
electrical axes of the QRS complex, P and T waves. Dif-
ferences in vector orientations are quantitatively expressed
as angles, the most familiar being the frontal QRST angle.
While these vectors and angles can be readily calculated
in the frontal plane from a standard 12-lead ECG, their
three-dimensional assessment is more feasible using ECG
recorded in a VCG system (most commonly Frank leads
system) or transformed into such system, as reflected in the
calculation methods for this group of indices.

Global electrical heterogeneity parameters

in the 1930s, Wilson et al. introduced the concept of
the SVG - a vector directed toward the myocardial region
with the shortest action potential duration. This
index reflects the axis of maximal electrical het-
erogeneity in the heart, but its calculation com-
plexity historically limited its clinical adoption
[4]. In 2010, Tereshchenko et al. expanded this
concept by introducing the SAI QRST param-
eter. This parameter is calculated as the sum of
the absolute values of areas under QRST curve,
averaged over 5 minutes, in three orthogonal
leads. The authors hypothesized that changes
in SAI QRST reflect the spatiotemporal het-
erogeneity of myocardial electrical activity.
In a healthy heart, synchronous depolarization
wave propagation ensures mutual cancellation
of opposing electrical fields in different myo-
cardial regions, whereas electrical heteroge-
neity - such as that arising from ischemia or
fibrosis - leads to uncompensated potentials,
altering the SAI of the QRS complex. Similar-
ly, heterogeneity of repolarization (e.g., due to
ischemia or electrolyte imbalances) manifests
as differences in the temporal and amplitude
characteristics of repolarization among myo-
cardial segments, producing changes in the
SAI of the T wave. Integrating over the entire
QRST interval allows assessment of heteroge-
neity contributions from both depolarization
and repolarization.

In a pilot study, a low SAI QRST was
associated with a more than threefold increase
in the risk of life-threatening VA; however,
this finding was not replicated in a subsequent
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study in which elevated, not reduced, SAI emerged as the
risk marker. These contradictory results were likely attrib-
utable to differences in the clinical characteristics of the
study populations [5-7].

Subsequently, the group of VCG parameters com-
prising the spatial QRST angle [8], SVG vector magnitude,
and SAI QRST became collectively known as GEH param-
eters (Figs 1 and 2).

In a large, long-term population-based study based on
the ARIC database, Perez-Alday et al. (2019) investigated
the prognostic value of GEH parameters for SCD over a
mean follow-up of 24,4 years. Based on the analysis of
577 SCD events recorded (3,7% of the cohort), the authors
proposed a biphasic model of SCD risk stratification: in
the short term, the significant predictor was an SVG vector
directed toward the ventricular outflow tracts, indicating
the presence of myocardial regions with a short refractory
period - a potential VA substrate; in the long term, great-
er predictive value was found for an SVG vector directed
toward the LV and a wide QRS-T angle, reflecting LV re-
modeling as a chronic arrhythmic substrate [9].

Further work focused on developing an SCD risk
score based on GEH indices. Waks et al. (2016) conducted
a study combining cohorts from the ARIC and CHS stud-
ies. Over a median follow-up of 14 years, 486 SCD events
occurred (7,56%). Proportional (PR) and competing risk
(CR) models were construct-
ed, incorporating demographic
characteristics, cardiovascular
history and risk factors, estab-
lished ECG indices (heart rate,
QTc duration, QRS width, LV

hypertrophy, intraventricular
conduction abnormalities), and
longitudinal changes in the GEH
parameters. Across all models,
GEH indices retained indepen-
dent prognostic value; inclusion
of LVEF did not significantly al-
ter the correlations. The most ro-
bust predictors were the spatial
QRS-T angle, SAI QRST, and

)
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cardiovascular risk factors, model 3 adding device charac-
teristics and model 4 additionally incorporating established
ECG markers (heart rate, QRS width, QTc duration).

Given the previously observed inconsistent associa-
tion of SAI QRST with arrhythmic risk, additional analysis
was performed for subgroups by IHD status. After full ad-
justment (model 4), the spatial QRS-T angle, SVG vector
direction, and SVG magnitude were significantly associat-
ed with the primary endpoint. Notably, arrhythmic risk cor-
related directly with QRST angle and SVG direction, and
inversely with SVG magnitude. In IHD patients, elevated
SAI QRST correlated with increased risk, whereas in non-
IHD patients, lower SAI QRST was the risk marker. These
findings were consistent with earlier observations that a su-
perior-posterior SVG direction and wide QRS-T angle in-
dicate elevated arrhythmic risk. The authors hypothesized
that nonuniform SAI-VA risk correlation was caused by the
underlying substrate for electrical heterogeneity. In IHD,
electrical heterogeneity is driven by localized ischemia -
manifesting as increased SAI, higher SVG magnitude, and
vector orientation toward the arrhythmogenic substrate,
whereas in non-ischemic etiologies, diffuse myocardial
remodeling and fibrosis dominate, replacing electrically
active myocardium and thus decreasing both SAI and SVG
magnitude, without specific directional changes (described
as the vector pointing «toward the entire LV»).

T2 T3 T4
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SVG vector magnitude. A risk
calculator based on these find-
ings was made available in the
supplementary materials of the
original article [10].
Subsequently, Waks et al.
investigated the prognostic utili-
ty of GEH parameters in patients

aT,;

with structural heart disease in si o2
. . ignal power,

the multicenter retrospective 1

GEHCO study [11]. The prima-

ry endpoint was appropriate ICD

therapy delivery for sustained

VT. Over a median follow-up of
4 years, 541 patients (=5% annu-
ally) reached the endpoint. Four
CR models were developed:
model 1 including demographic
variables only, model 2 adding

T 1 > f Hz

0,1 0,2 03

Fig. 3. PRD calculation: a - ECG in orthogonal lead system and T wave
extraction; b - T wave electrical axis vectors and angles between them; c - time
series of angles between T wave vectors (aT); d - power spectrum obtained by
Fourier transform of angle time series. PRD is defined as power below 0,1 Hz.
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These observations emphasize the necessity of ac-
counting for myocardial disease etiology when developing
GEH-based risk models. Study limitations included the
lack of standardized ICD programming protocols, absence
of postmortem ICD analysis in deceased patients to deter-
mine arrhythmic events immediately preceding death, and
the debated validity of using ICD therapy delivery as a sur-
rogate endpoint for SCD - concerns also noted in earlier
studies [12].

VCG markers exemplify a concept discovered ahead
of its time: introduced in the 1930s, they remained largely
unused in clinical practice due to calculation complexity,
but modern advances in automated ECG analysis have re-
vived scientific interest in these parameters.

FREQUENCY-DOMAIN ANALYSIS
OF REPOLARIZATION PHASE ECG
PARAMETERS

Frequency is a fundamental characteristic of oscil-
latory processes ubiquitous in biological systems. Phys-
iological homeostasis is maintained through numerous
feedback loops, whose operation is accompanied by char-
acteristic oscillations in the parameters under their control.
Consequently, alterations in the frequency characteristics
of biosignals can reflect disturbances in homeostatic reg-
ulation. Periodicity in regulatory influences, as manifested
in the heart’s electrical activity, can be investigated using
frequency-domain analysis of ECG and HRV signals. In
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addition, intrinsic oscillatory patterns of cardiac electrical
processes, including impulse conduction, excitation, and
myocardial repolarization, are of considerable interest.

Some frequency-domain indices are already estab-
lished risk markers (e.g., frequency domain parameters of
HRV), whereas others remain under investigation for clin-
ical applicability.

Periodic repolarization dynamics (PRD)

In 2014, Rizas et al. proposed a novel risk stratifica-
tion method for post-myocardial infarction (MI) patients,
grounded in three key premises:

* The influence of sympathetic overactivity on myocardi-
al repolarization process.

* Proven role of sympathetic stimulation in the pathogen-
esis of life-threatening arrhythmias.

* Experimentally proven pattern of sympathetic nerve ac-
tivity manifesting as low-frequency «burstsy.

The authors hypothesized that sympathetic modula-
tion of repolarization should manifest as low-frequency
periodic oscillations of the T-wave axis, termed PRD. PRD
assessment was based on 20-minute high-resolution ECG
recordings. A time series of angles between the electrical
axes of successive T waves - reflecting instantaneous in-
stability of the repolarization vector - was computed, fol-
lowed by frequency transform to quantify low-frequency
(<0.1 Hz) spectral power (Fig. 3).

Potential confounders were systematically excluded.
Possible relationship between PRD and HRV was ruled
out experimentally via fixed-
rate atrial pacing in volunteers,
which abolished HRV while
leaving PRD unaffected. The ef-
fect of spontaneous respiration
was excluded in an animal model
(anesthetized pigs) using fixed-
rate mechanical ventilation,
which preserved PRD. The link
between PRD and sympathetic
activity was further supported
by observations of PRD eleva-
tion during tilt-table testing and
exercise, and PRD reduction fol-

d

Normalized
signal energy, %

c
Signal energy,
mV/Hz

gl i

lowing B-adrenergic blockade.
In the ART study cohort, PRD
demonstrated prognostic value
for 5-year mortality. A threshold

of'5,75°2 (upper quartile) was as-
sociated with a nearly threefold
increase in all-cause and car-
diovascular mortality risk after
adjustment for clinical history
and cardiovascular risk factors.
PRD was also evaluated along-
side T-wave alternans (TWA) in

T T Lal T

50 100 fHz 199 50

Fig. 4. f99 calculation: a - ECG in orthogonal leads and borders of
«repolarization window», b - repolarization signal (ECG with QRS complexes
and P waves removed and replaced by zeros), c - repolarization signal energy
spectrum, d - normalized signal energy curve (0 to 100%). F99 is defined as

firequency where normalized signal energy reaches 99%.

the FINCAVAS study, showing
independent predictive value
for cardiovascular mortality, in-
cluding among patients without
detected TWA. Combined use of
PRD and TWA improved predic-
tion of 6-year all-cause mortality
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[13]. It is worth noting that the pilot study did not directly
evaluate mortality from fatal VA.

Rizas et al. (2017) conducted the first dedicated
investigation of PRD as an SCD risk marker in the MA-
DIT-II cohort. Of 854 patients, 506 received ICDs and 348
received medical therapy. Given that in CHF elevated sym-
pathetic tone is associated with both arrhythmic death and
pump failure death (non-sudden cardiac death, non-SCD),
the study endpoints included all-cause mortality, SCD and
non-SCD. Over a median follow-up of 20,4 months, 53
SCD cases occurred. After adjustment for clinical history,
cardiovascular risk factors, therapy, QRS width and LVEF,
PRD was a significant predictor of SCD across the entire
cohort. Among medically treated patients, PRD predicted
SCD, whereas in ICD recipients, it predicted both appro-
priate ICD therapy and non-SCD. The authors noted the
potential utility of PRD for identifying post-MI patients
with reduced LVEF who may benefit from prophylactic
ICD implantation. Study limitations included variability
in ECG acquisition methods, exclusion of atrial fibrillation
patients, changes in patient management protocols since
MADIT-II, and a relatively small sample size [14].

Palacios et al. (2021) obtained further data on the
prognostic role of PRD in the MUSIC cohort of CHF pa-
tients. Endpoints included SCD and non-SCD. Over the
follow-up period, there were 53 SCD and 53 non-SCD
events. PRD thresholds were established at 1,33°2 for SCD
and 1,31°% for non-SCD. SCD cases were significantly
more common in patients with elevated PRD, whereas no
significant difference in non-SCD cases was found between
elevated and normal PRD groups. After adjusting for de-
mographics, clinical history, laboratory parameters, HRV,
HRT, TWA and Holter monitor findings (non-sustained VT
and frequent PVCs), elevated PRD remained an indepen-
dent predictor of a nearly twofold higher SCD risk. The
combination of elevated PRD with abnormal turbulence
slope or TWA further increased
SCD risk two- to threefold.

In the discussion, the au-
thors emphasized PRD’s reliabil-
ity for differentiating high- and 500
low-risk patients, its prognos-
tic relevance for both SCD and
pump failure death, and its po-
tential for combination with oth-
er MEI markers. Notably, HRV -
parameters showed no clinically
significant prognostic value in
this cohort, and overall among
traditional risk factors, the most
influential were CHF functional
class and LVEF <35% [15].

Fragmentation of repo-

larization (f99 index)

In 2013, Burattini and
Giuliani proposed an alterna-
tive approach to analyzing the
frequency structure of repolar-
ization. A comparative study
of T-wave frequency content in
healthy individuals and post-

RR, ms

1000

12 3o

r=40ms

"
N

segment 1 (RR1 = 830ms, RR2 = 1000 ms)
segment 2 (RR2 = 1000 ms, RR3 = 760 ms)
segment 3 (RR3 =[760|ms, RR4 =(800|ms)
segment 4 (RR4 =800/ms, RR5 =|820/ms) —b 3 (self-similar + segments 3 and 5)|
segment 5 (RRS =/820/ms, RR6 =|800/ms)
segment 6 (RR6 = 800 ms, RR7 = 950 ms)
segment 7 (RR7 = 950 ms, RR8 = 930 ms)...

Next point is added to segments found similar for m = 2:

m =3: segment 3 (RR3 =/760|ms, RR4 =[800/ms, RR5 =(820]ms)
segment 4 (RR4 =/800ms, RR5 =820/ms, RR6 =1800§ms)
segment 5 (RRS = 820 ms, RR6 = 800 ms, RR7 = 950 ms)
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MI patients revealed significant differences. In the latter
group, an increased number of harmonics was observed in
the 10-35 Hz range, which the authors interpreted as re-
flecting fragmentation of the repolarization process - the
appearance of additional electrical oscillations. This can
be compared to the high-frequency notching and slurring
in the QRS complex caused by depolarization heterogene-
ity in structurally abnormal myocardium, visible as QRS
fragmentation on standard ECG or detectable via spectral
analysis [17]. Given the intrinsic coupling between depo-
larization and repolarization, the similarity of these abnor-
mal patterns supports the proposed hypothesis.

On this theoretical basis, Giuliani et al. (2014) in-
troduced the 99 index, defined as the frequency (in Hz)
at which the normalized T-wave spectral energy reaches
99% (Fig. 4). Their study included 108 post-MI patients
and 47 clinically healthy controls (mean age 45 + 15 years,
82% male). On average, {99 values were higher in post-MI
patients. The best sensitivity and specificity for prior MI
detection were achieved in leads I (threshold 15 Hz; sensi-
tivity 80%, specificity 77%) and aVL (threshold 17,8 Hz;
sensitivity 84%, specificity 74%), with the lowest perfor-
mance in leads III and aVF. Averaging f99 across precor-
dial leads yielded better results (sensitivity 81%, specificity
74%) than averaging across all 12 leads (sensitivity 69%,
specificity 74%). The authors noted that f99 was robust to
random fluctuations in T-wave end detection, independent
of heart rate, and unaffected by spatial dispersion of repo-
larization, making the index promising for evaluating re-
polarization abnormality [18]. However, the pilot study did
not examine f99 specifically as an arrhythmic risk marker.

Giuliani et al. later evaluated f99’s prognostic value
for life-threatening VA using the Leiden University data-
base of 170 CHF patients (LVEF <35%) with ICDs. Over
four years of follow-up from ICD implantation, patients
underwent exercise testing with ECG recording. Based

Similar (difference between 1st and 2nd RR intervals < r):

1 (self-similar only)
1 (self-similar only) )
2 (self-similar + segment 4) |

2 (self—similgﬂ segment 4) |
1 (self-similar only)
1 (self-similar only)

Similar:
[2 (self-similar + segment 4)
|12 (self-similar + segment 3) |
1 (self-similar only) )

Finally, ApEn is calculated from the ratio of similar segments for steps m+1 and m

Fig. 5. Calculation of approximate entropy (ApEn) for HRV time series. If pairs
of neighboring RR intervals (m = 2) are similar and adding next RR interval (m =
3) gives similar triplets, ApEn is low (system behavior is predictable); conversely,
if increasing segment length (m = 2 — m = 3) drastically reduces the number of
similar RR segments, ApEn is high and system behavior is more chaotic.
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on whether ICD therapy occurred during follow-up, pa-
tients were classified into ICD-positive and ICD-negative
groups, which were similar in clinical characteristics but
differed in LVEF (31% + 12% in ICD-positive vs. 39% =+
13% in ICD-negative). 99 was calculated from the first
minute of exercise ECG using the previously described
method. Maximum 99 values (maxF99) were computed
for 6 precordial, 12 standard, and 3 orthogonal leads, and
classification performance was assessed via ROC analy-
sis. The highest AUC (0,68), comparable to that of LVEF
(0,70) in this study, was obtained for orthogonal leads.
Cross-correlation analysis showed independence between
maxF99 and LVEF. The authors highlighted f99’s repro-
ducibility, robustness to spatial repolarization dispersion,
and prognostic value comparable to LVEF - an established
risk stratification marker [19].

Frequency-domain ECG markers emphasize the im-
portance of a deep physiological understanding for work
in electrophysiology. The approaches discussed - both the
hypothesis linking PRD to burst-like sympathetic activity
and the concept of repolarization fragmentation reflected
in the spectral characteristics of the T wave - require inves-
tigators not only to possess comprehensive knowledge of
cardiovascular regulation, myocardial electrophysiology
and mechanisms of arrhythmogenesis, but also to engage
in interdisciplinary collaboration with specialists in medi-
cal informatics and biosignal analysis.

NONLINEAR ANALYSIS OF ECG
PARAMETERS

Among nonlinear indices derived from ECG and
HRV signals and studied as MEI markers, particular inter-
est lies in those reflecting chaoticity and fractality - prop-
erties directly linked both to the structure and function of

I

i\

i

Fig. 6. a - fractal (self-similar) patterns in a spectrum obtained
by wavelet analysis of RR time series of a healthy person. b - loss
of fractality, increased rigidity and periodicity in a patient with
obstructive sleep apnea. Adapted from [44].
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the cardiac conduction system and myocardium, and to the
autonomic regulation of the CV system.

A key quantitative measure of chaoticity, estimable
from finite-length datasets, is entropy. In practice, sever-
al entropy measures are employed, differing in calcula-
tion methods and interpretative focus, including Shannon
entropy (ShanEn), approximate entropy (ApEn), sample
entropy (SampEn), fuzzy entropy (FuEn), Rényi entropy
(RenEn), multiscale entropy (MSE), permutation entropy
(PE), multiscale permutation entropy (MPE), and others.

For assessing fractal properties of a time series, the
Hurst exponent is widely used, calculated using methods
such as rescaled range (R/S) analysis, detrended fluctua-
tion analysis (DFA), or frequency-domain approaches.
For biomedical signals - which are typically nonstation-
ary and noisy - DFA is a preferred method, as it removes
the influence of local trends. Limitations of DFA include
the assumption of monofractality (self-similarity at a sin-
gle scaling factor) and the requirement for relatively long
data series (several hundred points). For shorter segments,
frequency-domain methods or DFA with modified detrend-
ing can be applied. Moreover, multiscale entropy methods
(MSE and related) are also capable of incorporating the
fractal properties of the analyzed signals.

Entropy and fractal properties of HRV

The pioneering application of entropy estimation in
electrocardiology is attributed to S. Pincus, developer of
the ApEn method [20] (Fig. 5), who described its use in
cardiovascular disease diagnostics [21]; J. Richman and J.
Moorman, who developed the improved SampEn method
[22]; and A. Goldberger, M. Costa, and C.-K. Peng, who
created the MSE method [23].

Concurrently, the concept of the fractal nature of
CV system activity was being established. T. Musha and
M. Kobayashi first described the HRV signal
spectrum characteristic of fractal systems - the
so-called pink noise [24]. A. Goldberger et al.
identified the relationship between conduction
system architecture and fractal spectral proper-
ties of the depolarization process (Fig. 6) [25].
C.-K. Peng and A. Goldberger developed DFA
as a key tool for fractal analysis (Fig. 7) [26].

Studies of nonlinear HRV analysis in the
context of SCD can be broadly categorized
into those addressing long-term risk stratifica-
tion (identifying high-risk patients in specific
cohorts, e.g., post-MI) and those addressing
short-term prediction (anticipating life-threat-
ening VA episodes before their onset). These
two settings differ substantially in the temporal
dynamics of nonlinear indices.

Long-term prognostic studies date back
to the 1990s-2000s. In an early study by Voss
et al. (1996; n = 26 post-MI patients, 16 with
prior life-threatening VA or SCD), entropy in-
dices were lower in the high-risk group, with
predictive accuracy around 75%. In the DI-
AMOND-MI cohort study by Huikuri et al.
(2000; 446 post-MI patients with LVEF <35%,
mean follow-up 685 days, 75 SCD events), a
reduced short-term fractal scaling exponent o

i
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< 0,75, reflecting short-range RR interval correlation, was
a significant SCD risk predictor (hazard ratio (HR) 2,5 in
univariate analysis and 1,4 after clinical adjustment), out-
performing established HRV measures (SDNN, LF, HF)
[27]. Similarly, in a prospective study by Mikikallio et
al. (2001; random sample of 325 subjects > 65 years from
a social insurance registry, 10-year follow-up, 29 SCD
events), o < 1,0 was the strongest predictor (HR 4,3 after
adjustment; AUC 0,75), surpassing SDNN [28].

More recent studies include Rohila and Sharma
(2020; 240 random 5-minute Holter segments from 20
SCD patients in the SDDB database), which showed sig-
nificantly lower values of five entropy measures (Samp-
En, PEn, etc.) and au DFA in the SCD group. Using
these in a random forest classifier yielded an accuracy of
91,67% [29].

Yan et al. (2023; 22 Holter recordings from SCD
patients in SDDB and AHADB databases) found reduced
HRV SampEn to be a significant, though less powerful,
SCD risk marker (AUC 0,66) compared to conventional
HRYV parameters (SDNN, RMSSD, LF) [30].

A large prospective study by Hernesniemi et al.
(2024; 2794 1-minute ECGs from the FINCAVAS cohort,
median follow-up 8,3 years, 83 SCD events) demonstrated
that DFA with nonlinear detrending identified a significant
correlation between reduced fractal HRV properties (lower
o1) and increased SCD risk (HR 2,4 per 1 SD), whereas
differences in conventional HRV parameters were not sig-
nificant. This study stands out for its large sample size and
for proposing a spectral HRV
analysis method applicable to a
ultrashort (1-minute) recordings,
potentially enabling use in wear-
able devices [31].

Across long-term studies,
reduced entropy and fractal mea-
sures in high-risk SCD patients
is a notably consistent finding.
Limitations include small and
clinically heterogeneous sam-
ples in most reports. Future
research should explore com-
bined models incorporating both
fractal and entropy measures
in well-characterized cohorts,
to facilitate validation, synthe-
sis, and translation into clinical
practice.

The first systematic studies
on short-term SCD prediction
using nonlinear HRV analy-
sis date to the 2010s. A notable
series by Ebrahimzadeh et al.
(2014-2019), using the MIT-
BIH database (35-40 Holter
recordings with VE, 18 control
sinus rhythm recordings), de-
veloped and refined prediction
methods combining established
linear HRV measures (time- and
frequency-domain) with novel
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nonlinear indices (Poincaré plot cloud width and length, a
DFA) and machine learning models (multilayer perceptron,
support vector machines, k-nearest neighbors, mixture of
experts). These approaches achieved VF prediction up to
13 minutes before onset [32-34]. Interestingly, o: DFA was
significantly higher before VF onset (1,12 vs. 0,83 in con-
trols), in contrast to findings in long-term SCD risk studies.
In an early work [32], reported sensitivity was 83,75% but
specificity only 0,159%, likely due to calculation error or
classifier overfitting for sensitivity at the expense of speci-
ficity; later works did not replicate this issue.

Shi et al. (2020), also using MIT-BIH data (20 VF
recordings, 18 controls), applied ensemble empirical
mode decomposition (EEMD) to HRV data. Classifica-
tion based on entropy measures and k-nearest neighbors
achieved higher predictive accuracy in the first 2-minute
interval before VF (94,7%) than a model using only lin-
ear parameters (86,8%), and the combined model reached
96,1%. The best-performing entropy measures were FuEn
and improved MPE. Significant parameter changes were
detectable up to 14 minutes before VF onset. The EEMD
method’s adaptability and noise robustness make it prom-
ising for wearable device applications [35].

Yang et al. (2023) reported a major advance in ear-
ly SCD detection. They introduced a novel nonlinear
multiscale index, Sv, derived from Poincaré plots. Using
MIT-BIH data (20 VF Holter recordings, 18 without VA),
a combined model incorporating Sv, ShanEn, and SDNN
with an SVM classifier achieved 91,22% predictive accu-
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Fig. 7. Detrended fluctuation analysis (DFA) method. a - algorithm for DFA
calculation: calculation of root-mean-square (RMS) residual variance (deviation
from local trend) at various time scales, plot of residual variance against time
scale and the regression approximating the variance-scale relation. Slope of
regression line reflects the strength of self-similarity at various time scales
(fractality). b - examples of signals with various level of self-similarity: low a
signifies prevalence of small-scale oscillations and lack of longer-range patterns
(chaotic behavior), a close to 1 reflects a balanced relation between amplitude
and scale of oscillations (fractal-like behavior), high a demonstrates prevalence
of long-range patterns over small-scale variation (rigid behavior, long-term
«memoryy: of the signal). Adapted from [45].
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racy 60-70 minutes before SCD - a fivefold improvement
in lead time compared to prior studies [36].

These short-term prediction studies benefit from the
standardization inherent to public ECG databases but are
limited by small sample sizes (35-40 recordings). Such
methods may be particularly useful in ECG monitoring de-
vices for high cardiovascular risk patients. Future directions
include evaluating EEMD and combined DFA/Sv models
on ECG recordings of varying quality and duration, and in
diverse clinical populations, to define practical applicability.

Entropy and fractal properties of repolarization

An original approach to nonlinear ECG analysis was
proposed by DeMazumder et al. (2016) [37]. The authors
hypothesized that the degree of repeatability in ventricular
repolarization patterns, assessed via QT interval variabil-
ity, reflects the functional state of the body’s regulatory
systems. They introduced the repolarization entropy index
(proprietary term EntropyXQT), an enhanced version of
SampEn designed to assess the complexity and repeat-
ability of ventricular repolarization patterns. This index is
derived from QT interval variability analysis, thereby cap-
turing embedded periodic oscillations in interval duration.
Due to its calculation method, EntropyXQT can be con-
sidered a «hybrid» index, reflecting both complexity and
fractality (scale invariance) of cardiac dynamics.

The prognostic value of EntropyXQT for life-threat-
ening VA was assessed in the PROSe-ICD study [38].
The primary endpoint was the first appropriate ICD ther-
apy delivery for VT or VF, the secondary endpoint was a
composite of the primary and all-cause mortality. Over a
mean follow-up of 45 + 24 months, 134 patients reached
the primary endpoint and 300 reached the secondary end-
point (166 deaths without prior ICD therapy). EntropyX-
QT’s predictive value was evaluated in two models: the
Seattle Heart Failure Model (SHFM) [39] and a baseline
model incorporating clinical and laboratory variables plus
established ECG measures, including HRV, QRS dura-
tion, late potentials, and repolarization indices (QTc, QT/
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Fig. 8. Colors of noise. 1 - white noise characteristic
of random processes with no autocorrelation. 2 -
pink “fractal” 1/f noise characteristic of normally
functioning systems containing multiple hierarchical
levels of control and balanced autocorrelation. 3 -
Brownian (“brown” or “red”) noise characteristic
of systems with strong dependence on past states and
strong autocorrelation. Adapted from [46].
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RR, QTVi). High EntropyXQT values (fifth quintile) were
independently associated with more than a threefold in-
creased risk of ICD intervention, even after adjustment for
30 additional parameters. The prognostic value of Entro-
pyXQT was independent of other repolarization indices,
including QTVi. Adding EntropyXQT to the baseline
model improved net reclassification by 31-36%, and add-
ing it to the SHFM improved reclassification by 40%. The
authors noted EntropyXQT’s potential utility for primary
prevention of SCD, its robustness to noise, its ease of cal-
culation from short ECG recordings, and its consistency
with prior research on entropy measures of cardiac activity
for predicting pathological states [40, 41].

A noteworthy contribution comes from M. Muru-
gappan et al. (2020), who focused on nonlinear analysis
of the R-Tend segment for short-term SCD prediction,
using the MIT-BIH database (18 Holter recordings with
VEF, 18 controls without VA). For each of the five consec-
utive 1-minute segments preceding VF onset, they calcu-
lated ApEn, SampEn, the largest Lyapunov exponent and
the Hurst exponent - thus incorporating both entropy and
fractal measures. Classification was performed using sub-
tractive fuzzy clustering, neuro-fuzzy clustering and SVM.
The best results were obtained with SVM: on the fifth min-
ute before VF onset, predictive accuracy reached 100% for
SampEn, 98,68% for ApEn, 97,37% for the largest Lya-
punov exponent, and 94,74% for the Hurst exponent. The
remarkably high accuracy for ApEn and SampEn contrasts
with their more modest performance in HRV-based short-
term SCD prediction. A major strength of the study is the
novelty of analyzing the R-Tend segment, while its main
limitation is the small sample size dictated by the MIT-BIH
SCD database [42].

Of particular interest is the dynamic behavior of non-
linear HRV indices in long-term risk versus immediate
pre-SCD states. While some entropy measures decrease
over the long term, others exhibit a sharp rise immediately
before fatal VA onset. Notably, for repolarization entropy,
such a paradox was not observed. Clinically, these patterns
may reflect two complementary pathological processes:

Chronic phase (entropy decrease): loss of the «healthy
chaosy in heart rhythm characteristic of effective autonom-
ic regulation [43], consistent with the depletion of adaptive
reserves seen in CHF patients or those with prior MI.

Acute phase (entropy increase in HRV and repo-
larization): manifestation of critical MEI and increasing
electrical heterogeneity, creating a substrate for fatal ar-
rhythmias - consistent with the theory of «critical slowing
downy in complex systems approaching a transition state.

Importantly, this acute-phase rise was most promi-
nent for multiscale and adaptive measures (e.g., IMPE,
FuEn) of HRV, whereas traditional single-scale measures
(ApEn, SampEn) of HRV were less informative. For repo-
larization entropy, ApEn and SampEn also rose significant-
ly, likely reflecting disorganization of ventricular electrical
processes rather than changes in autonomic modulation.

A similar biphasic pattern was observed for fractal
characteristics:

* Optimal regulation (oo DFA = 1,0): represents balanced
vagal-sympathetic interaction and nested regulatory loops
of the CV system, producing a “pink noise” spectrum.
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e Long-term risk (¢ — 0,5; high EntropyXQT due to loss
of self-similar oscillations): indicates disintegration of reg-
ulatory mechanisms, loss of correlations, and a random re-
sponse pattern (“white noise” spectrum).

e Immediate SCD threat (o >1,5): may reflect sympa-
thetic hyperactivation with dominance of low-frequency
oscillations, increased «memory» and rigidity of the sys-
tem, locking it onto a trajectory toward pathological state
(«brown noise» spectrum) (Fig. 8).

CONCLUSION

Modern approaches to the risk stratification of sud-
den cardiac death and life-threatening ventricular arrhyth-
mias extend beyond traditional ECG markers, offering
novel methods for assessing myocardial electrical insta-
bility. The groups of novel markers reviewed here reflect
different aspects of arrhythmogenesis.

The key advantage of GEH vector parameters lies in
their ability to quantify the spatiotemporal heterogeneity
of depolarization and repolarization, which is particularly
important in patients with both ischemic and non-ischemic
cardiomyopathies. Interpretation of these markers requires
careful consideration of the underlying myocardial pathol-
ogy, given the differences in prognostic significance across
conditions.

The distinctive value of frequency-domain MEI
markers stems from their capacity to reflect disturbances
in autonomic regulation and electrical heterogeneity of re-
polarization - both of which are critical components of ar-
rhythmogenesis in post-MI and heart failure patients. Clin-
ical implementation of frequency-based markers requires
standardization of ECG acquisition and analysis protocols.

Nonlinear MEI markers - encompassing entropy
and fractal properties of HRV and specific ECG compo-

REVIEWS

nents - represent a novel conceptual framework for un-
derstanding arrhythmogenesis, framing it as a multi-level
collapse of the cardiovascular system’s adaptive potential,
a breakdown in the balance between chaos and order, and a
simplification of regulatory mechanisms, where excessive
rigidity of control (sympathetic hyperactivation) coexists
with micro-level electrical fragmentation. This perspective
is new and potentially highly promising, but it demands
multidisciplinary collaboration between cardiologists,
electrophysiologists, physicists, mathematicians and com-
puter science specialists.

The challenges pertaining to research of novel MEI
markers are typical for any rapidly evolving field in the
process of evidence accumulation and synthesis: consider-
able heterogeneity of study populations, lack of standard-
ized acquisition protocols for the studied indices, and, in
many cases, contradictory results. These issues are likely
to be temporary and should be resolved as the field pro-
gresses toward integrating findings and developing practi-
cal clinical applications.

Promising directions include exploring combined
marker models from different groups using machine learn-
ing for long-term arrhythmic risk stratification, as well as
identifying short-term SCD predictors in high cardiovascu-
lar risk populations - particularly through long-term moni-
toring, wearable medical electronics, and on-demand ECG
analysis.

In summary, novel ECG MEI markers do not replace
but rather complement traditional approaches, providing a
deeper understanding of arrhythmogenesis pathophysiolo-
gy and forming a basis for more flexible SCD prevention
strategies. Future research will likely focus on validating
these indices in large prospective cohorts and developing
standardized algorithms for their practical clinical use.
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