ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ

А.В.Евтушенко, В.В.Евтушенко, Ю.В.Саушкина, С.М.Минин, К.А.Петлин, К.А.Смышляев, В.Х.Ваизов, А.М.Гусакова, Т.Е.Суслова, Ю.Б.Лишманов, С.В.Попов

КЛИНИЧЕСКАЯ ОЦЕНКА РАДИОЧАСТОТНОЙ ДЕНЕРВАЦИИ СЕРДЦА ФГБУ «НИИ кардиологии» СО РАМН, Томск, Россия

C целью изучения эффективности радиочастотной денервации сердца, выполненной с использованием пенетрирующей методики обследованы и прооперированы 32 пациента с приобретёнными пороками клапанов сердца, 13 мужчин и 19 женщин, средний возраст которых составил $60,0\pm9,4$ лет.

Ключевые слова: врожденные пороки сердца, длительно персистирующая фибрилляция предсердий, симпатическая модуляция, радиочастотная катетерная аблация, денервация, сцинтиграфия.

To study effectiveness of radiofrequency heart denervation carried out using the penetrating technique, 32 patients aged 60.0±9.4 years with acquired valvular heart disease (13 men and 19 women) were examined and treated.

Key words: acquired valvular disease, long-term persisting atrial fibrillation, sympathetic modulation, radio-frequency catheter ablation, denervation, scintigraphy, 123I metaiodobenzylguanidine.

Вегетативная нервная система (ВНС) играет важную роль в модуляции нормальной сердечной электрофизиологии. Это достигается с помощью сложной сети пре- и постганглионарных симпатических и парасимпатических волокон, синапсы которых имеются на внешних и внутренних сердечных ганглиях, и, в конечном счете, непосредственно иннервируют кардиомиоциты [7]. Колебания вегетативного тонуса могут вызвать изменения электрофизиологических свойств в отдельных клетках, которые могут проявляться клинически несколькими путями, начиная от изменений в частоте сердечных сокращений и заканчивая изменением сердечного ритма. Вегетативная нервная система (ВНС) может сыграть решающую роль в инициировании и поддержании фибрилляции предсердий (ФП) [11]. Поэтому денервация может быть механизмом, способным усилить терапевтические эффекты различных процедур для лечения ФП. Тем не менее, долгосрочный эффект денервации в хирургическом лечении ФП до сих пор до конца не изучен [22]. Эти отношения между вегетативным тонусом и эволюцией сердечных аритмий являются областями для развития исследований с увеличивающимся количеством доказательств ключевой роли вегетативных ганглиев и симпатических нервов в патогенезе ФП [7].

Нейрогуморальная активация, при которой повышенная активность ВНС является ключевым компонентом, играет важнейшую роль в генезе хронической сердечной недостаточности (ХСН). Нейрогуморальная система оказывает влияние на многие органы, и в настоящее время наши знания о молекулярных и системных путях, участвующих в нейрогуморальной активации являются неполными [17]. Все методы оценки степени активности ВНС имеют ограничения, и они не являются взаимозаменяемыми. Данные методы включают определение выброса норадреналина, микронейрографию, радиоизотопные методики, анализ частоты сердечных сокращений и артериального давления (вариабельности сердечного ритма, чувствительности барорецепторов, турбулентность сердечного ритма) [17].

Было показано, что для снижения смертности при сердечной недостаточности, механизм действия многих препаратов связан с ослаблением влияния симпатической нервной системы и стимуляции парасимпатической [17]. Тем не менее, противопоказания к приёму лекарств, побочные эффекты и недостаточное ослабление влияния симпатической нервной системы, является вопросом, вызывающим озабоченность эффективностью фармакологического подхода. Это привело к появлению новых методик лечения с применением устройств для симпатической модуляции, показывающих обнадеживающие результаты [17, 30-33]. Несмотря на это, разработка новых способов симпатической денервации и изучения её эффективности, является в настоящее время актуальной проблемой. Поэтому целью данного исследования явилось изучение качества радиочастотной денервации сердца, выполненной с использованием пенетрирующей методики.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

В исследование было включено 32 пациента с приобретёнными пороками клапанов сердца, 13 мужчин и 19 женщин. Средний возраст пациентов составил 60,0±9,4 лет. Пороки сердца диагностировались на основании анамнестических данных, результатов физикального и инструментального исследований. Стеноз митрального клапана был выявлен у 15 больных, недостаточность митрального клапана – у 13 и стеноз аортального клапана – у 4. Всем пациентам выполнялась эхокардиоскопия перед операцией с определением морфологии поражения клапанного аппарата сердца и степени гемодинамических нарушений трансклапанного потока крови (градиент, площадь отверстия клапана, эффективная площадь и объём регургитации, соотношение эффективной площади отверстия клапана к площади поверхности тела пациента). По данным теста с 6-минутной ходьбой 21 пациент был отнесён к III функциональному классу (ФК) сердечной недостаточности (по NYHA), 11 па-

© А.В.Евтушенко, В.В.Евтушенко, Ю.В.Саушкина, С.М.Минин, К.А.Петлин, К.А.Смышляев, В.Х.Ваизов, А.М.Гусакова, Т.Е.Суслова, Ю.Б.Лишманов, С.В.Попов

циентов – ко II ФК по NYHA, средний ФК ХСН составил $2,3\pm1,1$.

Выборка сплошная, критериями включения в исследование явились наличие у пациентов длительно персистирующей ФП, резистентой к медикаментозной терапии, в сочетании пороками сердца, требующими хирургической коррекции. Критериями исключения из исследования были тяжёлые атеросклеротические поражения коронарного русла (гемодинамически значимые стенозы 2 и более артерий), наличие тяжёлой сопутствующей патологии, синдром полиорганной недостаточности, непереносимость препаратов йода, нежелание пациента участвовать в исследовании.

Бета-адреноблокаторы (БАБ) получали 29 пациентов (90,6%), ингибиторы ангиотензинпревращающего фермента (иАПФ) и диуретики получали все пациенты, 5 больных (16%) принимали дигоксин. За 5 дней до операции пациентам отменялись БАБ и дигоксин. Всем больным регистрировалась ЭКГ в 12 отведениях, по показаниям проводилось суточное мониторирование ЭКГ по Холтеру. Всем пациентам перед операцией была выполнена коронарография. Симпатический тонус сердца оценивался с помощью сцинтиграфии с ¹²³І-метайодбензилгуанидином (¹²³І-МИБГ) [6, 14]. По данным планарной сцинтиграфии миокарда (ПСМ) оценивали общую симпатическую активность по соотношению «сердце/средостение» («С/Ср») и скорости вымывания индикатора. По данным эмиссионной томографии оценивали региональную симпатическую активность [6, 14].

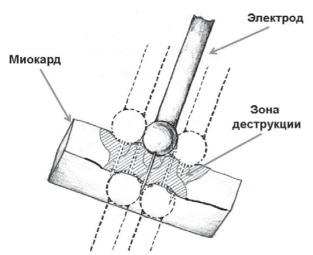
Всем пациентам выполнена хирургическая коррекция пороков сердца в условиях искусственного кровообращения (ИК). В соответствии с задачами исследования больные были разделены на две группы. В первую группу вошёл 21 пациент с длительно персистирующей ФП. Средняя давность ФП составила 3,5±2,1 лет. В этой группе коррекция пороков сердца всем пациентам была дополнена радиочастотной (РЧ) фрагментацией предсердий «Лабиринт» по пенетрирующей методике (рис. 1) с деструкцией параганглионарных нервных сплетений по схеме C.Pappone (2004 г.) и N.Doll [5, 16, 32]. В первой группе реконструкция митрального клапана выполнена 10 больным, реконструкция митрального, аортального и трикуспидального клапанов – 2 и протезирование митрального клапана – 9. Во вторую (контрольную) группу вошли 11 пациентов с синусовым ритмом. Им не проводилось РЧ вмешательство. По данным электрофизиологического исследования (ЭФИ) все эти пациенты не имели исходной дисфункции синусового узла. В контрольной группе реконструкция митрального клапана выполнена 6 больным, протезирование митрального клапана 1 и протезирование аортального клапана - 4.

Пациентам первой группы интраоперационно после стернотомии и вскрытия перикарда проводилась электроимпульсная терапия до начала каких-либо манипуляций на сердце, и, в случае восстановления синусового ритма (СР) выполнялось ЭФИ. В случае нормальных значений показателей функции проводящей системы сердца, пациентам проводилось радиочастотное вмешательство на предсердиях. После основного

этапа операции и восстановления синусового ритма вновь проводили ЭФИ.

У больных этой группы деструкция параганглионарных нервных сплетений проводилась по оригинальной пенетрирующей методике (патент РФ № 2394522 С2 от 20.07.2010 г.) [25, 28] в соответствие со схемами C.Pappone и N.Doll [4, 15, 31]. Во время эпикардиального этапа РЧ-фрагментации предсердий по схеме «Лабиринт III» [26-28] дополнительно пенетрирующим электродом обрабатывались места локализации параганглионарных нервных сплетений в жировых подушках в зоне устья нижней полой вены, лёгочных вен и крыши левого предсердия. Пенетрирующая методика была выбрана для этой цели в связи с тем, что она позволяет выполнить деструкцию на всю глубину обрабатываемой зоны, в то время как стандартное эпикардиальное воздействие оказывается неэффективным, т.к. жировая ткань является изолятором для радиочастотной энергии.

Статистическую обработку полученных данных проводили с применением пакета программ SPSS 15.0 for Windows (SPSS Software Products). Проверку на соответствие выборок нормальному закону распределения проводили критерием Шапиро-Уилка (Shapiro-Wilk). Описание данных осуществлялось с помощью среднего и стандартного отклонения - М±StD. Для оценки достоверности межгрупповых различий использовали t-критерий Стьюдента. Для оценки достоверности внутригрупповых различий (динамика показателей до-после операции внутри одной группы) использовали парный t-критерий Стьюдента. Уровень значимости р принимали равным 0,05.


ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Все пациенты, включенные в исследование, выписаны из клиники. Синусовый ритм достаточной частоты восстановился у 19 пациентов (90,5%) 1-й группы. 1 пациентке (4,75%) потребовалась имплантация ЭКС. У 1 пациента (4,75%) сохраняется левопредсердная инцизионная тахикардия. В обеих группах по данным теста с 6-тиминутной ходьбой снизился класс ХСН: в 1-й группе, в среднем, на 1,2±0,7 ФК NYHA, во 2-й группе — на $1,1\pm0,2$. Ни в одном случае использования пенетрирующей методики РЧ воздействия на миокард предсердий не было зафиксировано связанных с ней осложнений, ни в раннем, ни в отдалённом послеоперационном периодах. До операции в обеих группах не было статистически значимых различий в симпатическом тонусе, что показано с использованием данных сцинтиграфии с 123 І-МИБГ. Хотя, у пациентов с длительно персистирующей ФП индекс «сердце-средостение» до операции был достоверно ниже (1,64±0,21 и $1,9\pm0,27$, соответственно, p<0,05), а скорость вымывания индикатора была достоверно выше по сравнению с контрольной группой $(30,21\pm10,43\%$ и $21,94\pm15,01\%$, соответственно, p<0,05), дефект накопления 123 І-МИБГ до операции был сопоставим (11,1±5,6% и 8,9±5,0%, соответственно, р=0,057). После проводимого хирургического лечения у пациентов 1-ой группы отмечалось достоверное снижение индекса «сердце-средостение» по сравнению с дооперационными показателями $(1,64\pm0,21~\mathrm{u}~1,42\pm0,18,$ соответственно, p<0,05), но отмечалось достоверное увеличение дефекта накопления индикатора $(11,1\pm5,6\%~\mathrm{u}~24,9\pm7,56\%,$ соответственно, p<0,05) (рис. 2). У пациентов второй группы после операции отмечалось только статистически значимое снижение индекса «сердце-средостение» $(1,9\pm0,27~\mathrm{u}~1,63\pm0,24,$ соответственно, p<0,05).

После операции были выявлены достоверные межгрупповые различия по скорости вымывания 123 I-МИБГ (36±13,38% и 25,14±9,96%, соответственно, p<0,05). Также у пациентов первой группы индекс «сердце-средостение» после вмешательства был достоверно ниже по отношению ко второй группе пациентов (1,42±0,18 и 1,63±0,24, соответственно, p<0,05). При оценке региональной симпатической активности у пациентов первой группы дефект накопления 123 I-МИБГ был достоверно больше по сравнению со второй группой больных (24,9±7,56% и 13,7±5,81%, соответственно, p<0,05) (рис. 2).

Результаты вегетативной модуляции ритма сердца давно известны. Экспериментальные и клинические исследования показали, что и симпатический, и парасимпатический компоненты вовлечены в патогенез ФП [3]. Повышение парасимпатического тонуса связано с укорочением эффективного рефрактерного периода и дисперсии [15, 18], в то время как усиление симпатического тонуса приводит к постдеполяризации и активности триггера, облегчающего запуск и поддержание ФП [24]. Таким образом, эффекты денервации могут иметь потенциальную терапевтическую значимость для лечения ФП. Также различные исследования установили связь между вегетативной денервацией и эффективностью аблации в краткосрочном периоде.

Тем не менее, изучение симпатического тонуса у пациентов с длительной персистенцией ФП при помощи наиболее распространенного метода (спектральный анализ ЭКГ) является недостоверным именно вследствие неоднородности RR интервалов. Поэтому в последние годы внимание исследователей было привлечено к радиоизотопными методами исследования вегетативного тонуса сердца при помощи сцинтиграфии с ¹²³І-МИБГ. Преимущество этой методики заклю-

Puc. 1. Схема пенетрирующей методики воздействия.

чается в том, что при оценке результатов исключается компонента вариабельности сердечного ритма [6, 14].

Повышение эффективности хирургического лечения ФП остаётся одним из наиболее актуальных вопросов хирургической аритмологии. Так, с 2004 года известны работы С.Рарропе, в которых он указывает, что денервация сердца повышает эффективность РЧ аблации. C.Pappone с соавт. [16] первыми предположили, что эффекты денервации могут способствовать предотвращению рецидивов ФП. Ряд исследователей проводили только изолированную аблацию ганглионарных сплетений, при этом эффективность её варьировала от низкой (29% - М. Scanavacca с соавт., 2006), до средней (50% - R.Lemery с соавт., 2006) и высокой (84% - Platt с соавт., 2004) [9, 10, 19, 21]. Другие авторы показывают необходимость дополнительных эндокардиальных вмешательств после аблации ганглионарных сплетений [29].

Необходимо отметить, что подавляющее большинство предшествующих работ по оценке вегетативного статуса сердца после воздействия на параганглионарные нервные сплетения основывались именно на анализе спектра ЭКГ. Данный метод, на наш взгляд, имеет очевидные недостатки вследствие очевидной несопоставимости вариабельности сердечного ритма до и после успешной катетерной аблации ФП [1, 22, 23]. Ряд исследователей использовали в качестве индикатора симпатического тонуса сердца ¹²³І-МИБГ. Суть теста состоит в конкурентном замещении рецепторов индикатором и норадреналином [6, 14]. Данный тест не зависит от фоновой ЧСС и вариабельности RR интервалов.

Опыт некоторых авторов показывает, что полное отсутствие рецидивов $\Phi\Pi$ не всегда достижимо, однако полное восстановление синусового ритма не всегда необходимо для пациентов, чтобы достичь клинически значимого преимущества [20].

Ряд исследователей показали, что в ранние сроки после радиочастотного вмешательства на предсердиях возможно восстановление проведения с изолированных участков (Benussi S. с соавт., 2010) [2]. В дальнейшем, с формированием рубцов по линиям воздействия, возникает устойчивый блок проведения. Таким образом, можно вести речь о том, что деструкция параганглионарных сплетений имеет значение именно в ранние сроки, так как денервация подавляет активность тригтерных зон, следовательно, снижает риск рецидива ФП до формирования рубцовой ткани.

Необходимо учитывать, что субэпикардиальное расположение параганглионарных нервных сплетений, нахождение их в жировом субэпикардиальном слое, а также значительная вариабельность их локализаций делают РЧ катетерную аблацию этих образований достаточно сложной задачей. Отсутствие объективных методов контроля за степенью деструкции параганглионарных нервных сплетений делало оценку эффективности подобных вмешательств весьма субъективной.

В нашем исследовании для деструкции параганглионарных нервных сплетений использовалась оригинальная т.н. «пенетрирующая» методика РЧ воздействия, трансмуральность повреждения стенки

предсердия при которой доказана и не вызывает сомнений [25, 28]. Очевидным преимуществом этой методики является то, что жировая ткань, окружающая параганглионарные структуры не является барьером (изолятором) для РЧА.

В исследованной нами группе пациентов при помощи 123 І-МИБГ было выявлено, что у пациентов с ФП до операции имелось достоверное повышение симпатического тонуса по сравнению с сопоставимой по тяжести порока группой пациентов с синусовым ритмом. В то же время, по результатам сцинтиграфии с ¹²³І-МИБГ, полученным в течение 30 дней после операции, выполненной у пациентов обеих групп на фоне синусового ритма можно отметить, что несмотря на исходную ФП и повышение общего симпатического тонуса, после РЧА области параганглионарных сплетений у пациентов группы 1 показатели симпатической активности снизились достоверно и в более значительной степени, чем в контрольной группе пациентов с синусовым ритмом.

При этом следует отметить, что статистически достоверное снижение индекса «сердце-средостение» произошло в обеих группах и очевидно изменение этого показателя в большей степени связано с фактом коррекции порока сердца. В то же время, произошедшие после деструкции параганглионарных нервных сплетений в 1 группе изменения дефекта накопления радиофармпрепарата и времени его вымывания свидетельствуют о снижении локального симпатического тонуса сердца. Данных изменений не происходит в группе пациентов, которым не была осуществлена деструкция параганглионарных сплетений.

Таким образом, на основании полученных результатов нашего исследования, можно вести речь о том, что применяемая пенетрирующая методика РЧ воздействия позволяет выполнить деструкцию параганглионарных нервных сплетений сердца с доказанным эффектом вне зависимости от глубины их залегания и наличия жировых включений в окружающих тканях. Учитывая, что ¹²³І-МИБГ конкурентно связывается с рецепторами к норадреналину, дефект его накопления в сердце после воздействия и увеличение скорости вымывания по сравнению с дооперационными данными и контрольной группой, говорят о снижении количества рецепторов к норадреналину, а, следовательно, о снижении общего симпатического тонуса сердца.

По имеющимся данным, до операции различий в симпатическом тонусе сердца в обеих группах не выявлено. Деструкция параганглионарных нервных сплетений с использованием пенетрирующей методики статистически значимо снижает симпатический тонус сердца. В послеоперационном периоде у пациентов, которым была выполнена деструкция параганглионарных нервных сплетений, отмечается статистически значимое увеличение скорости вымывания метайодбензилгуанидина, снижение индекса «сердце-средостение» на ранних и отсроченных сцинтиграммах, а также увеличение дефекта накопления метайодбензилгуанидина, что позволяет использовать данный метод в оценке качества симпатической денервации сердца в послеоперационном периоде. Применяемая для деструкции параганглионарных нервных сплетений пенетрирующая методика радиочастотного воздействия является эффективной, что позволяет широко использовать её для таких вмешательств.

Конфликт интересов

Настоящим авторы подтверждают отсутствие конфликта интересов. Исследование проведено при финансовой поддержке ЗАО «Сибирская Аграрная группа». Авторы выражают глубокую признательность председателю Совета директоров ЗАО «Аграрная Группа» Тютюшеву Андрею Петровичу и члену совета директоров ЗАО «Аграрная Группа» Тютюшевой Раисе Антоновне за содействие в предоставлении гранта на данное исследование.

ЛИТЕРАТУРА

- 1. Arimoto T, Tada H, Igarashi M et al. High washout rate of iodine-123-metaiodobenzylguanidine imaging predicts the outcome of catheter ablation of atrial fibrillation // J Cardiovasc Electrophysiol; 2011; 22 (12): 1297-304.
- 2. Benussi S., Galanti A., Zerbi V. et al. Electrophysiologic efficacy of irrigated bipolar radiofrequency in the clinical setting // J Thorac Cardiovasc Surg.; 2010; 139(5): 1131-6.
- 3. Chang D., Zhang S., Yang D. Effect of epicardial fat pad ablation on acute atrial electrical remodeling and inducibility of atrial fibrillation // Circulation Journal; 2010; vol. 74; no. 5: 885-894.
- 4. Crawford M.H. Does cardiac sympathetic innervation imaging fulfill an unmet need for managing atrial fibrillation? // JACC Cardiovasc Imaging; 2011; 4: 87–88.
- 5. Doll N., Pritzwald-Stegmann P., Czesla M. et al. Ablation of Ganglionic Plexi During Combined Surgery for Atrial Fibrillation // Ann Thorac Surg; 2008; 86: 1659-1663.
- 6. Ji S.Y., Travin M.I. Radionuclide imaging of cardiac autonomic innervation. // J Nucl Cardiol; 2010; 17:655–666.
- 7. Kapa S., Venkatachalam K.L., Asirvatham S.J. The au-

- tonomic nervous system in cardiac electrophysiology: an elegant interaction and emerging concepts // Cardiol Rev; 2010; 18: 275-284.
- 8. Katsikis A., Ekonomopoulos G., Papaioannou S. et al. Reversible reduction of cardiac sympathetic innervation after coronary artery bypass graft surgery: an observational study using serial iodine 123-labeled meta-iodobenzylguanidine (MIBG) imaging // J Thorac Cardiovasc Surg; 2012; 144: 210–216.
- 9. Lemery R., Birnie D., Tang A. et al. Feasibility study of endocardial mapping of ganglionated plexuses during catheter ablation of atrial fibrillation // Heart Rhythm; 2006; 3: 387-96.
- 10. Lemery R. How to perform ablation of the parasympathetic ganglia of the left atrium//Heart Rhythm; 2006; 3(10): 1237-9.
- 11. Lorincz I., Szabó Z., Simkó J. et al. Atrial fibrillation and the autonomous nervous system // OrvosiHetilap; 2008; 149: 2019–2028.
- 12. Merlet P., Pouillart F., Dubois-Rande J.L. et al. Sympathetic nerve alterations assessed with 123I-MIBG in the-

- failing human heart // J Nucl Med; 1999; 40: 224-231.
- 13. Murphy D.A., Thompson G.W., Ardell J.L. et al. The heart reinnervates after transplantation // Ann Thorac Surg; 2000; 69: 1769–81.
- 14. Nagamatsu H., Momose M., Kobayashi H. et al. Prognostic value of 123I-metaiodobenzylguanidine in patients with various heart diseases // Ann Nucl Med; 2007; 21: 513–520.
- 15. Oliveira M., da Silva M.N., Geraldes V. et al. Acute vagal modulation of electrophysiology of the atrial and pulmonary veins increases vulnerability to atrial fibrillation // Experimental Physiology; 2011; 96(2): 125–133.
- 16. Pappone C., Santinelli V., Manguso F. et al. Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation. 2004 Jan 27;109(3):327-34.
- 17. Patel H.C., Rosen S.D., Lindsay A. et al. Targeting the autonomic nervous system: measuring autonomic function and novel devices for heart failure management // Eur Heart J.; 2014; 35(2): 77-85.
- 18. Po S.S., Scherlag B.J., Yamanashi W.S. et al. Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions // Heart Rhythm; 2006; 3(2): 201–208.
- 19. Pokushalov E., Turov A., Shugayev P. et al. Catheter Ablation of Left Atrial Ganglionated Plexi for Atrial Fibrillation // Asian Cardiovasc Thorac Ann; 2008; 16: 194–20. 20. Saliba W., Wazni O.M. Sinus rhythm restoration and treatment success: insight from recent clinical trials // Clin Cardiol; 2011; 34:12–22.
- 21. Scanavacca M., Pisani C.F., Hachul D. et al. Selective atrial vagal denervation guided by evoked vagal reflex to treat patients with paroxysmal atrial fibrillation. // Circulation; 2006; 114(9): 876-85.
- 22. Wang K., Chang D., Chu Z. Denervation as a common mechanism underlying different pulmonary vein isolation strategies for paroxysmal atrial fibrillation: evidenced by heart rate variability after ablation // The ScientificWorld Journal; 2013; Article ID 569564.
- 23. Wenning C., Lange P.S., Schülke C. et al.: Pulmonary vein isolation in patients with paroxysmal atrial fibrillation is associated with regional cardiac sympathetic denervation. // EJNMMI Research; 2013; 3(1): 81.
- 24. Workman A.J. Cardiac adrenergic control and atrial fibrillation // Naunyn-Schmiedeberg's Archives of Pharmacology; 2010; 381(3): 235–249.
- 25. Евтушенко А.В., Евтушенко В.В., Петлин К.А., Беленкова Е.М. Способ достижения трансмуральности

- повреждения миокарда предсердий при лечении наджелудочковых аритмий и устройство для его осуществления. // Бюл. № 20; 2010; пат. 2394522 Рос. Федерация.
- 26. Евтушенко А.В., Князев М.Б., Шипулин В.М. и др. Хирургическое лечение фибрилляции предсердий у пациентов с врождёнными и приобретёнными пороками сердца // Вестник аритмологии. 2004. № 35. С.16-21.
- 27. Евтушенко А.В., Евтушенко В.В., Петлин К.А. и др. Пути оптимизации достижения трансмуральности повреждения миокарда предсердий при радиочастотном воздействии // Вестник аритмологии. − 2007. № 48. С.15-21.
- 28. Евтушенко А.В., Евтушенко В.В., Петлин К.А. и др. Определение концепции повышения эффективности отдалённых результатов радиочастотной фрагментации предсердий по схеме «Лабиринт» на основании опыта двухсот операций // Вестник аритмологии. -2012. № 69. C.5-11.
- 29. Ревишвили А.Ш., Лабарткава Е.З., Джорджикия Т.Р., Сичинава Н.В. Циркулярная изоляция вестибулярной части легочных вен после неэффективной радиочастотной аблации ганглионарных сплетений у пациента с пароксизмальной формой фибрилляции предсердий // Вестник аритмологии. 2008. № 54. С.67-73.
- 30. Покушалов Е.А., Туров А.Н., Шугаев П.Л. и др. Новый подход к лечению фибрилляции предсердий: катетерная аблация ганглионарных сплетений в левом предсердии // Вестник аритмологии. 2006. № 45. С.17-27.
- 31. Стенин И.Г., Романов А.Б., Шабанов В.В. и др. Радиочастотная аблация ганглионарных нервных сплетений левого предсердия у пациентов с хронической формой фибрилляции предсердий // Вестник аритмологии. 2011. № 65. C.19-24.
- 32. Покушалов Е.А., Туров А.Н., Романов А.Б. и др. Сравнительный анализ процедуры С.Рарропе и анатомической аблации ганглионарных сплетений у пациентов с фибрилляцией предсердий // Вестник аритмологии. 2011. № 64. С.16-22.
- 33. Артеменко С.Н., Романов А.Б., Туров А.Н. и др. Сравнительная оценка радиочастотной остиальной, антральной изоляции устьев лёгочных вен и аблации ганглионарных сплетений у пациентов с фибрилляцией предсердий // Вестник аритмологии. 2012. № 68. С.14-20.

КЛИНИЧЕСКАЯ ОЦЕНКА РАДИОЧАСТОТНОЙ ДЕНЕРВАЦИИ СЕРДЦА

А.В.Евтушенко, В.В.Евтушенко, Ю.В.Саушкина, С.М.Минин, К.А.Петлин, К.А.Смышляев, В.Х.Ваизов, А.М.Гусакова, Т.Е.Суслова, Ю.Б.Лишманов, С.В.Попов

С целью изучения радиочастотной денервации сердца обследовано и прооперировано 32 пациента с приобретёнными пороками клапанов сердца, 13 мужчин и 19 женщин. Средний возраст пациентов составил 60,0±9,4 лет. Стеноз митрального клапана был выявлен у 15 больных, недостаточность митрального клапана - у 13 и стеноз аортального клапана - у 4. По данным теста с 6-минутной ходьбой (ТШХ) 21 пациент был отнесён к ІІІ функциональному классу (ФК) сердечной недостаточности (по NYHA), 11 пациентов – ко ІІ ФК по NYHA, средний ФК ХСН составил 2,3±1,1. Бета-адреноблокаторы (БАБ) получали 29 пациентов (90,6%), ингибиторы ангиотензинпревращающего фермента (иАПФ) и диуретики получали все пациенты, 5 больных (16%) принимали дигоксин. Всем пациентам перед операцией была выполнена коронарография. Симпатический тонус сердца оценивался с помощью сцинтиграфии с ¹²³І-метайодбензилгуанидином (¹²³І-МИБГ). Оценивали общую симпати-

ческую активность по соотношению «сердце/средостение» («С/Ср») и скорости вымывания индикатора. Всем пациентам выполнена хирургическая коррекция пороков сердца. В первую группу вошёл 21 пациент с длительно персистирующей ФП. В этой группе коррекция пороков сердца была дополнена радиочастотной (РЧ) фрагментацией предсердий «Лабиринт» с деструкцией параганглионарных нервных сплетений. Во вторую группу вошли 11 пациентов с синусовым ритмом. Им не проводилось РЧ вмешательство.

Все пациенты, включенные в исследование, выписаны из клиники. Синусовый ритм восстановился у 19 пациентов (90,5%) 1-й группы, 1 пациентке (4,75%) потребовалась имплантация ЭКС., у 1 пациента (4,75%) сохраняется левопредсердная инцизионная тахикардия. В обеих группах по данным ТШХ снизился класс ХСН: в 1-й группе, в среднем, на 1,2±0,7 ФК NYHA, во 2-й группе – на 1,1±0,2. До операции у пациентов 1-й группы индекс «С/Ср» до операции был достоверно ниже $(1,64\pm0,21 \text{ и } 1,9\pm0,27,\text{ соответственно, p}<0,05)$, а скорость вымывания индикатора была достоверно выше по сравнению с контрольной группой (30,21±10,43% и 21,94±15,01%, соответственно, p<0,05). После лечения у пациентов 1-ой группы отмечалось достоверное снижение индекса «С/Ср» по сравнению с дооперационными показателями (1,64±0,21 и 1,42±0,18, соответственно, p<0,05), но отмечалось достоверное увеличение дефекта накопления индикатора (11,1 \pm 5,6% и 24,9 \pm 7,56%, соответственно, p<0,05). У пациентов второй группы после операции отмечалось только статистически значимое снижение индекса «С/Ср» $(1,9\pm0,27 \text{ и } 1,63\pm0,24, \text{ p}<0,05)$. После операции были выявлены достоверные межгрупповые различия по скорости вымывания 123 І-МИБГ (36 \pm 13,38% и 25,14 \pm 9,96%, соответственно, p<0,05). Также у пациентов первой группы индекс «С/Ср» после вмешательства был достоверно ниже по отношению ко второй группе пациентов (1,42±0,18 и 1,63±0,24, соответственно, p<0,05). При оценке региональной симпатической активности у пациентов первой группы дефект накопления ¹²³I-МИБГ был достоверно больше по сравнению со второй группой больных $(24,9\pm7,56\%$ и $13,7\pm5,81\%$, соответственно, p<0,05). Таким образом, дефект накопления 123 I-МИБГ в сердце после воздействия и увеличение скорости вымывания по сравнению с дооперационными данными и контрольной группой, говорят о снижении количества рецепторов к норадреналину, а, следовательно, о снижении общего симпатического тонуса сердца.

CLINICAL ASSESSMENT OF RADIOFREQUENCY CARDIAC DENERVATION
A.V. Evtushenko, V.V. Evtushenko, Yu.V. Sauchkina, S.M. Minin, K.A. Petlin,
K.A. Smyshlyaev, B.Kh. Vaizov, A.M. Gusakova, T.E. Suslova, Yu.B. Lishmanov, S.V. Popov

To study radiofrequency cardiac denervation, 32 patients aged 60.0 ± 9.4 years with acquired valvular heart disease (13 men and 19 women) were examined and treated. Mitral stenosis was documented in 15 patients, mitral insufficiency, in 13 subjects, and aortic stenosis, in 4 ones. According to the 6 minute walk test data (6MWT), 21 patients were considered as heart failure subjects of Functional Class III (NYHA); 11 patients had Functional Class II (NYHA). The average functional class was 2.3 ± 1.1 . Beta-adrenoblockers (β AB) were received by 29 patients (90.6%), angiotensin-converting enzyme inhibitors (ACEI) and diuretics were taken by all study subjects; 5 patients (16%) took Digoxin. Coronary angiography was performed to all patients before intervention. The cardiac sympathetic tone was assessed using scintigraphy with 123I-metaiodobenzylguanidine (123I-MIBG). The overall sympathetic activity was assessed on the basis of the heart/mediastinum ratio (H/M) and the indicator clearance. Valvular disease was surgically corrected in all subjects.

Group I consisted of 21 patients with long-term persistent atrial fibrillation (AF). In them, the surgical correction of valvular disease was accompanied by with the labyrinth radiofrequency atrial fragmentation with destruction of paraganglionic nervous plexuses. 11 patients with the sinus rhythm constituted Group II. No radiofrequency procedure was performed in them.

All study subjects were discharged from hospital. The sinus rhythm recovered in 19 patients (90.5%) of Group I; one female patient (4.75%) required pacemaker implantation, in one more patient (4.75%), left atrial incision tachycardia persisted. According to the 6MWT data, the functional class of heart failure improved in both groups by 1.2 \pm 0.7 functional class (NYHA) in Group I and by 1.1 \pm 0.2 functional class in Group II. Before the radiofrequency procedure, the H/M index in Group I was significantly lower (1.64 \pm 0.21 and 1.9 \pm 0.27, respectively; p<0.05) and the indicator clearance was significantly higher (30.21 \pm 10.43% and 21.94 \pm 15.01%, respectively; p<0.05) than in Control Group.

After the radiofrequency treatment, in Group I, the significant decrease in the H/M index as compared with the preoperation data was noted $(1.64\pm0.21 \text{ and } 1.42\pm0.18, \text{ respectively; p}<0.05)$ but an increase in the defect of the indicator accumulation occurred $(11.1\pm5.6\% \text{ and } 24.9\pm7.56\%, \text{ respectively; p}<0.05)$. In Group II, after the procedure only a statistically significant fall of the H/M index was found $(1.9\pm0.27 \text{ and } 1.63\pm0.24, \text{p}<0.05)$. After the procedure, a significant inter-group difference was found for the 123I-MIBG clearance $(36\pm13.38\% \text{ and } 25.14\pm9.96\%, \text{ respectively; p}<0.05)$.

In addition, the H/M index after radiofrequency procedure in Group I was significantly lower than in Group II $(1.42\pm0.18 \text{ and } 1.63\pm0.24, \text{ respectively; p}<0.05)$. When assessing the regional sympathetic activity in the patients of Group I, the 123I-MIBG accumulation defect was significantly more pronounced than in Group II $(24.9\pm7.56\% \text{ and } 13.7\pm5.81\%, \text{ respectively; p}<0.05)$. Thus, the 123I-MIBG cardiac accumulation defect after the radiofrequency procedure and an increased clearance as compared to the pre-procedure data and the control group give evidence of a decreased number of norepinephrine receptors and, therefore, a decreased overall sympathetic cardiac tone.