Preview

Journal of Arrhythmology

Advanced search

Mechanisms of atrial fibrillation in COVID-19

https://doi.org/10.35336/VA-2023-1-11

Abstract

Atrial fibrillation (AF) is the most frequent form of cardiac arrhythmia in COVID-19 infected patients. The occurrence of AF paroxysms is often associated with the acute period of infection in time. At the same time, the pathophysiological mechanisms of the occurrence of AF associated with COVID-19 remain insufficiently studied. The review considers the available literature data on the influence of factors such as reduced availability of angiotensin-converting enzyme 2 re- ceptors, interaction of the virus with the cluster of differentiation 147 and sialic acid, increased inflammatory signaling, “cytokine storm”, direct viral damage to the endothelium, electrolyte and acid-alkaline balance in the acute phase of severe illness and increased sympathetic activity.

About the Authors

K. A. Moseichuk
Ryazan State Medical University
Russian Federation

Ryazan, 9 Visokovoltnaya str.



E. V. Filippov
Ryazan State Medical University
Russian Federation

Ryazan, 9 Visokovoltnaya str.



References

1. Molina CE, Abu-Taha IH, Wang Q, et al. Profibrotic, Electrical, and Calcium-Handling Remodeling of the atria in heart failure patients with and without atrial fibrillation. Frontiers in physiology. 2018;9: 1383. https://doi.org/10.3389/fphys.2018.01383.

2. Coronavirus disease 2019 (COVID-19) Situation Report 73. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200402-sitrep-73-covid-19.pdf?sfvrsn=5ae25bc7_4CdC-SRAJ.

3. Osadchy AnM, Semenyuta VV, Kamenev AV, et al. Electroanatomic substrate of atrial fibrillation in patients after COVID-19. Russian Journal of Cardiology. 2021;26 (7): 4526. (In Russ.). https://doi. org/10.15829/1560-4071-20214526.

4. Russo V, Di Maio M, Mottola FF, et al. Clinical characteristics and prognosis of hospitalized COVID-19 patients with incident sustained tachyarrhythmias: A multicenter observational study. European journal of clinical investigation. 2020;50(12): e13387. https://doi.org/10.1111/eci.13387.

5. Colon C, Barrios J, Chiles J, et al. Atrial Arrhythmias in COVID-19 Patients. Journal of the American College of Cardiology. 2020;6(9): 1189-1190. https://doi.org/10.1016/j.jacep.2020.05.015.

6. Taha ME, Alsafi W, Taha M, et al. Coronavirus Disease and New-Onset Atrial Fibrillation: Two Cases. Cureus. 2020;12(5): e8066. https://doi.org/10.7759/cureus.8066.

7. Sala S, Peretto G, De Luca G, et al. Low prevalence of arrhythmias in clinically stable COVID-19 patients. Pacing and Clinical Electrophysiology. 2020;43(8): 891-893. https://doi.org/10.1111/pace.13987.

8. Bhatla A, Mayer MM, Adusumalli S, et al. COVID-19 and Cardiac Arrhythmias. Heart rhythm. 2020;17(9): 1439-1444. https://doi.org/10.1016/j.hrthm.2020.06.016.

9. Asfandiyarova NS, Filippov EV, Dashkevich OV, et al. Advantages and disadvantages of lockdown (self-isolation regime) introduced during the first wave of coronaviral infection for patients with polymorbid pathology. I.P. Pavlov Russian Medical Biological Herald. 2021;29(3): 363-368. (In Russ.). https://doi.org/10.17816/PAVLOVJ79388.

10. Sanz AP, Tahoces LS, Pérez RO, et al. New-onset atrial fibrillation during COVID-19 infection predicts poor prognosis. Cardiology journal. 2021;28(1): 34-40. https:// doi.org/10.5603/CJ.a2020.0145.

11. Serezhina EK, Obrezan AG. Atrial fibrillation associated with a new coronavirus infection: mechanisms and therapeutic approaches. Cardiology: News, Opinions, Training. 2021; 2(27): 14-20 (in Russ.). https://doi.org/10.33029/2309-1908-2021-9-2-14-20.

12. Kochi AN, Tagliari AP, Forleo GB, et al. Cardiac and arrhythmic complications in patients with COVID-19. Journal of cardiovascular electrophysiology. 2020;31(5): 1003-1008. https://doi.org/10.1111/jce.14479.

13. Lambert DW, Yarski M, Warner FJ, et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severeacute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). Journal of Biological Chemistry. 2005;280(34): 30113-9. https://doi.org/10.1074/jbc.M505111200.

14. Tortorici MA, Walls AC, Lang Y, et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nature structural & molecular biology. 2019;26(6): 481489. https://doi.org/10.1038/s41594-019-0233-y.

15. Chen Z, Mi L, Xu J, et al. Function of HAb18G/ CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. The Journal of infectious diseases. 2005;191(5): 755-760. https://doi.org/10.1086/427811.

16. Murray IR, Baily JE, Chen WCW, et al. Skeletal and cardiac muscle pericytes: functions and therapeutic potential. Pharmacology & therapeutics. 2017;171: 65-74. https://doi.org/10.1016/j.pharmthera.2016.09.

17. Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovascular research. 2020;116(6): 1097-1100. https://doi.org/10.1093/cvr/cvaa078.

18. Sweeney M, Foldes G. It takes two: endothelial-perivascular cell cross-talk in vascular development and disease. Frontiers in cardiovascular medicine. 2018;5: 154. https://doi.org/10.3389/fcvm.2018.00154.

19. Bontekoe J, Lee J, Bansal V, et al. Biomarker profiling in stage 5 chronic kidney disease identifies the relationship between angiopoietin-2 and atrial fibrillation. Clinical and Applied Thrombosis/Hemostasis. 2018;24(9_suppl): 269S-276S. https://doi.org/10.1177/1076029618808909.

20. Chang SH, Yeh YH, Lee JL, et al. Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation. Basic research in cardiology. 2017;112(5): 58. https://doi.org/10.1007/s00395-017-0647-9.

21. Qiao G, Xia D, Cheng Z, et al. miR-132 in atrial fibrillation directly targets connective tissue growth factor. Molecular medicine reports. 2017;16(4): 4143-4150. https://doi.org/10.3892/mmr.2017.7045.

22. Li M, Yi X, Ma L, et al. Hepatocyte growth factor and basic fibroblast growth factor regulate atrial fibrosis in patients with atrial fibrillation and rheumatic heart disease via the mitogen-activated protein kinase signaling pathway. Experimental and Therapeutic Medicine. 2013;6(5): 11211126. https://doi.org/10.3892/etm.2013.1274.

23. Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC: Clinical Electrophysiology. 2017;3(5): 425-435. https://doi.org/10.1016/j.jacep.2017.03.002.

24. South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. American Journal of Physiology-Heart and Circulatory Physiology. 2020;318(5): H1084-H1090. https://doi.org/10.1152/ ajpheart.00217.2020.

25. Sahara M, Ikutomi M, Morita T, et al. Deletion of angiotensin-converting enzyme 2 promotes the development of atherosclerosis and arterial neointima formation. Cardiovascular research. 2014:101(2): 236-246. https://doi.org/10.1093/cvr/cvt245.

26. Patel VB, Oudit GY. Response to Comment on Patel et al. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity. Diabetes. 2016;65(2): e3-4. https://doi.org/10.2337/dbi15-0037.

27. Angeli F, Spanevello A, De Ponti R, et al. Electrocardiographic features of patients with COVID-19 pneumonia. European journal of internal medicine. 2020;78: 101106. https://doi.org/10.1016/j.ejim.2020.06.015.

28. Seizer P, Gawaz M, May AE. Cyclophilin A and EMMPRIN (CD147) in cardiovascular diseases. Cardiovascular research. 2014;102(1): 17-23. https://doi.org/10.1093/cvr/cvu035.

29. Venkatesan B, Valente AJ, Prabhu SD, et al. EMM-PRIN activates multiple transcription factors in cardiomyocytes, and induces interleukin-18 expression via Rac1-dependent PI3K/Akt/IKK/NF-kappaB andMKK7/ JNK/AP-1 signaling. Journal of molecular and cellular cardiology. 2010.49(4): 655-663. https://doi.org/10.1016/j.yjmcc.2010.05.007.

30. Luan Y, Guo Y, Li S, et al. Interleukin-18 among atrial fibrillation patients in the absence of structural heart disease. Europace. 2020;12(12): 1713-1718. https://doi.org/10.1093/europace/euq321.

31. Racca V, Torri A, Grati P, et al. Inflammatory Cytokines During Cardiac Rehabilitation After Heart Surgery and Their Association to Postoperative Atrial Fibrillation. Scientific reports. 2020;10(1): 8618. https://doi.org/10.1038/s41598-020-65581-1.

32. Hu W, Xie J, Zhu T, et al. Serum N-Acetylneuraminic Acid Is Associated with Atrial Fibrillation and Left Atrial Enlargement. Cardiologyresearchand practice. 2020;2020: 1358098. https://doi.org/10.1155/2020/1358098.

33. Huang C. Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan China. Lancet. 2020;395(10223): 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.

34. Madjid M, Vela D, Khalili-Tabrizi H, et al. Systemic infections cause exaggerated local inflammation in atherosclerotic coronary arteries: clues to the triggering effect of acute infections on acute coronary syndromes. Texas Heart Institute Journal. 2007;34(1): 11-18.

35. Chen D, Li X, Song Q, et al. Assessment of Hypokalemia and Clinical Characteristics in Patients With Coronavirus Disease 2019 in Wenzhou, China. JAMA network open. 2020;3(6): e2011122. https://doi.org/10.1001/jamanetworkopen.2020.11122.

36. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11): 1061-1069. https://doi.org/10.1001/jama.2020.1585.

37. Krijthe BP, Heeringa J, Kors JA, et al. Serum potassium levels and the risk of atrial fibrillation: the Rotterdam Study. International Journal of Cardiology. 2013;168(6): 5411-5415. https://doi.org/10.1016/j.ijcard.2013.08.048.

38. Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clinical Research in Cardiology. 2020;109(5): 531-538. https://doi.org/10.1007/s00392-020-01626-9.

39. Stevenson IH, Roberts-Thomson KC, Kistler PM, et al. Atrial electrophysiology is altered by acute hypercapnia but not hypoxemia: implications for promotion of atrial fibrillation in pulmonary disease and sleep apnea. Heart Rhythm. 2010;7(9): 1263-1270. https://doi.org/10.1016/j.hrthm.2010.03.020.

40. Nowroozpoor A, Malekmohammad M, Seyyedi SR, et al. Pulmonary hypertension in Intensive Care Units: an updated review. Tanaffos. 2019;18(3): 180-207.

41. Linz D, Elliott AD, Hohl M, et al. Role of autonomic nervous system in atrial fibrillation. International Journal of Cardiology. 2019;287: 181-188. https://doi.org/10.1016/j.ijcard.2018.11.091.

42. Denham NC, Pearman CM, Caldwell JL, et al. Calcium in the Pathophysiology of Atrial Fibrillation and Heart Failure. Frontiers in Physiology. 2018;9: 1380. https://doi.org/10.3389/fphys.2018.0138.

43. Lazzerini PE, Boutjdir M, Capecchi PL. COVID-19, arrhythmic risk, and inflammation: mind the gap! Circulation. 2020;142(1): 7-9. https://doi.org/10.1161/CIRCULATIONAHA.120.047293.

44. Rosas-Ballina M., Ochani M., Parrish W. R. et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proceedings of the National Academy of Sciences. 2008;105: 11008-13. https://doi.org/10.1073/pnas.0803237105.

45. Borovikova L.V., Ivanova S., Zhang M. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405: 458-62. https://doi.org/10.1038/35013070.

46. Yeh Y., Lemola K., Nattel S. Vagal atrial fibrillation. Acta Cardiologica Sinica. 2007;23(1): 1-12.


Review

For citations:


Moseichuk K.A., Filippov E.V. Mechanisms of atrial fibrillation in COVID-19. Journal of Arrhythmology. 2023;30(1):е6-е11. https://doi.org/10.35336/VA-2023-1-11

Views: 393


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8641 (Print)
ISSN 2658-7327 (Online)