РАДИОЧАСТОТНАЯ КАТЕТЕРНАЯ АБЛАЦИЯ: БИОФИЗИЧЕСКИЕ ОСНОВЫ И ПАТОФИЗИОЛОГИЧЕСКИЕ АСПЕКТЫ
https://doi.org/ 10.25760/VA-2018-94-47-65.
Аннотация
Об авторах
В. И. СтекловРоссия
А. А. Серговенцев
Россия
Ф. Г. Рзаев
Россия
М. В. Емельяненко
Россия
М. В. Липская
Россия
В. Е. Валуев
Россия
Ю. А. Владимиров
Россия
Список литературы
1. Hoyt R.H., Huang S.K., Marcus F.I. et al. Factors influencing transcatheter radiofrequency ablation of the myocardium // J. Appl. Cardiol. 1986; 1: 469.
2. Huang S.K., Bharati S., Graham A.R. et al. Closed chest catheter desiccation of the atrioventricular junction using radiofrequency energy - a new method of catheter ablation // J. Am. Coll. Cardiol. 1987; 9: 349 - 358.
3. Borggrefe M., Budde Т., Podczeck A. et al. High frequency alternating current ablation of an accessory pathway in humans // J. Am. Coll. Cardiol. 1987; 10: 576-582.
4. Langberg J.J., Chin M.C., Rosenqvist M. et al. Catheter ablation of the atrioventricular junction with radiofrequency energy // Circulation 1989; 80: 1527-1535
5. Lee M.A., Morady F., Kadish A. et al. Catheter modification of the atrioventricular junction with radiofrequency energy for control of atrioventricular nodal reentry tachycardia // Circulation 1991; 83: 827-835.
6. Jackman W.M., Xunzhang W., Friday K.J. et al. Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current // N. Engl. J. Med. 1991; 324: 1605.
7. Klein L.S., Shih H.T., Hackett K.F. et al. Radiofrequency catheter ablation of ventricular tachycardia in patients without structural heart disease // Circulation 1992; 85: 1666-1674.
8. Wittkampf F.H., Hauer R.N., Robles de Medina E.O. Control of radiofrequency lesion size by power regulation // Circulation 1989; 80: 962-968.
9. Simmers T.A., Wittkampf F.H. et al. In vivo ventricular lesion growth in radiofrequency catheter ablation // Pacing Clinical Electrophysiology 1994; 17: 523-531.
10. Feld G.K. Special Report. Radiofrequency catheter ablation of Type 1 atrial flutter using a large-tip electrode catheter and high-power radiofrequency energy generator // Expert Review of Medical Devices 2004; 1(2): 187-192.
11. Kuck K.H., Reddy V.Y., Schmidt B. et al. A novel radiofrequency ablation catheter using contact force sensing: Toccata study // Heart Rhythm. 2012; 9: 18-23.
12. Shah D.C., Namdar M. Real-time contact force measurement: a key parameter for controlling lesion creation with radiofrequency energy // Circ. Arrhythm. Electrophysiology 2015; 8(3): 713-721.
13. Petersen H.H., Chen X., Pietersen A. et al. Temperature-controlled irrigated tip radiofrequency catheter ablation: Comparison of in vivo and in vitro lesion dimensions for standard catheter and irrigated tip catheter with minimal infusion rate // J. Cardiovasc. Electrophysiology 1998; 9: 409-414.
14. Demazumder D., Mirotznik M.S., Schwartzman D. Biophysics of radiofrequency ablation using an irrigated electrode // J. Interv. Cardiac. Electrophysiology 2001; 5: 377-389.
15. Panescu D., Whayne J.G., Fleischman S.D. et al. Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation // IEEE Transactions on Biomedical Engineering 1995; 42(9): 879-890.
16. Nath S., DiMarco J.P., Gallop R.G. et al. Effects of dispersive electrode position and surface area on electrical parameters and temperature during radiofrequency catheter ablation // Am. J. Cardiol. 1996; 77: 765-767.
17. Wittkampf F.H., Nakagawa H.R. Catheter Ablation: Lessons on Lesions // Pacing and Clinical Electrophysiology 2006; 29: 1285-1297.
18. Nakagawa H., Wittkampf F.H., Yamanashi W.S. et al. Inverse relationship between electrode size and lesion size during radiofrequency ablation with active electrode cooling // Circulation 1998; 98: 458-465.
19. Максимов Д.Б., Дурманов С.С., Козлов С.С. и др. Анализ осложнений радиочастотных катетерных аблаций // Вестник аритмологии 2012; 69: 11-15.
20. Spector P., Reynolds M.R., Calkins H. et al. Metaanalysis of ablation of atrial flutter and supraventricular tachycardia // Am. J. Cardiol. 2009; 104(5): 671.
21. Wittkampf F.H., Van Oosterhout M.F., Loh P. et al. Where to draw the mitral isthmus linein catheter ablation of atrial fibrillation: Histological analysis // Eur. Heart J. 2005; 26: 689-695.
22. Haines D.E. The biophysics of radiofrequency catheter ablation in the heart: The importance of temperature monitoring // Pacing Clinical Electrophysiology 1993; 16: 586-591.
23. Wittkampf F.H., Simmers T.A., Hauer R.N. et al. Myocardial temperature response during radiofrequency catheter ablation // Pacing Clinical Electrophysiology 1995; 18: 307- 317.
24. Nath S., DiMarco J.P., Haines D.E. Basic aspects of radiofrequency catheter ablation // J. Cardiovasc. Electrophysiology 1994; 5: 863-876.
25. Skrumeda L.L., Mehra R. Comparison of standard and irrigated radiofrequency ablation in the canine ventricle // J. Cardiovasc. Electrophysiology 1998; 9: 1196-1205.
26. Wittkampf F.H., Nakagawa H., Yamanashi W. et al. Thermal latency in radiofrequency ablation // Circulation 1996; 93: 1083-1086.
27. Langberg J.J., Harvey M., Calkins H. et al. Titration of power output during radiofrequency catheter ablation of atrioventricular nodal reentrant tachycardia // Pacing Clin. Electrophysiology 1993; 16: 465-470.
28. Kongsgaard E., Steen T., Jensen O. et al. Temperature guided radiofrequency catheter ablation of myocardium: Comparison of catheter tip and tissue temperatures in vitro // Pacing Clin. Electrophysiology 1997; 20: 1252-1260.
29. McRury I.D., Whayne J.G., Haines D.E. Temperature measurement as a determinant of tissue heating during radiofrequency catheter ablation: An examination of electrode thermistor positioning for measurement accuracy // J. Cardiovasc. Electrophysiology 1995; 6: 268-278.
30. Matsudaira K., Nakagawa H., Wittkampf F.H. et al. High incidence of thrombus formation without impedance rise during radiofrequency ablation using temperature control // Pacing Clin. Electrophysiology 2003; 26: 1227- 1237.
31. Schumacher B., Eick O., Wittkampf F.H. et al. Temperature response following non-thraumatic low power radiofrequency application // Pacing Clin. Electrophysiology 1999; 22: 339-343.
32. Cooper J.M., Sapp J.L., Tedrow U. et al. Ablation with an internally irrigated radiofrequency catheter: Learning how to avoid steam pops // Heart Rhythm. 2004; 3: 329-333.
33. Haines D.E., Verrow A.F. Observations on electrodetissue interface temperature and effect on electrical impedance during radiofrequency ablation of ventricular myocardium // Circulation 1990; 82: 1034-1038.
34. Calkins H., Prystowsky E., Carlson M. et al. Temperature monitoring during radiofrequency catheter ablation procedures using closed loop control // Circulation 1994; 90: 1279- 1286.
35. Demolin J.M., Eick O.J., Munch K. et al. Soft thrombus formation in radiofrequency catheter ablation? // Pacing Clin. Electrophysiology 2002; 25: 1219- 1222.
36. Thakur R.K., Klein G.J., Yee R. et al. Embolic complications after radiofrequency catheter ablation // Am. J. Cardiology 1994; 74: 278-279.
37. Zhou L., Keane D., Reed G. et al. Thromboembolic complications of cardiac radiofrequency catheter ablation: a review of the reported incidence, pathogenesis and current research directions // J. Cardiovasc. Electrophysiology 1999; 10: 611-620.
38. Nakagawa H., Yamanashi W.S., Pitha J.V. et al. Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation // Circulation 1995; 91: 2264-2273.
39. Cochet H., Sacher F., Chaumeil A. et al. Steam pop during radiofrequency ablation // Circulation: Arrhythmia and Electrophysiology 2014; 7: 559-560.
40. Juneja R., O’Callaghan P., Rowland E. Tissue rupture and bubble formation during radiofrequency catheter ablation // Circulation 2001; 103: 1333-1334.
41. Strickberger S.A., Vorperian V.R., Man K.C. et al. Relation between impedance and endocardial contact during radiofrequency catheter ablation // Am. Heart J. 1994; 128: 226-229.
42. Hartung W.M., Burton E., Deam A.G. et al. Estimation of temperature during radiofrequency catheter ablation using impedance measurements // Pacing Clin. Electrophysiology 1995; 18: 2017-2021.
43. Tsai C.F., Tai C.T., Yu W.C. et al. Is 8-mm more effective than 4-mm tip electrode catheter for ablation of typical atrial flutter? // Circulation 1999; 100: 768-771.
44. Da Costa А., Jamon Y., Romeyer-Bouchard C. et al. Catheter selection for ablation of the cavotricuspid isthmus for treatment of typical atrial flutter // Journal of Interventional Cardiac Electrophysiology 2006; 17(2): 93-101.
45. Otomo K., Yamanashi W.S., Tondo C. et al. Why a large tip electrode makes a deeper radiofrequency lesion: Effects of increase in electrode cooling and electrode-tissue interface area // J. Cardiovasc. Electrophysiology 1998; 9: 47-54.
46. Iori M., Bottoni N., Quartieri F. et al. Ablation of typical atrial flutter: a prospective study of cooled-tip versus 8-mm-tip catheters // Minerva Cardioangiology 2014; 62(3): 283-286.
47. Lewalter T., Bitzen A., Wurtz S. et al. Gold-tip electrodes; a new “deep lesion” technology for catheter ablation? In vitro comparison of a gold alloy versus platinum-iridium tip electrode ablation catheter // J. Cardiovasc. Electrophysiology 2005; 16: 770-772.
48. Lewalter T., Weiss C., Spencker S. et al. AURUM 8 Study Investigators. Gold vs. platinum-iridium tip catheter for cavotricuspid isthmus ablation: the AURUM 8 study // Europace 2011; 13(1): 102-108.
49. Lewalter T., Weiss C., Mewis C. et al. AURUM 8 study investigators. An optimized approach for right atrial flutter ablation: a post hoc analysis of the AURUM 8 study // J. Interv. Card. Electrophysiology 2017; 48(2): 159-166.
50. Weiss C., Antz M., Eick O. et al. Radiofrequency catheter ablation using cooled electrodes: Impact of irrigation flow rate and catheter contact pressure on lesion dimensions // Pacing Clin. Electrophysiology 2002; 25: 463-469.
51. Yokoyama K., Nakagawa H., Wittkampf F.H. et al. Comparison of electrode cooling between internal and open irrigation in radiofrequency ablation; lesion depth and incidence of thrombus and steam pop // Circulation 2006. 113: 11- 19.
52. Everett T.H., Lee K.W., Wilson E.E. et al. Safety profiles and lesion size of different radiofrequency ablation technologies: a comparison of large tip, open and closed irrigation catheters // J. Cardiovasc. Electrophysiology 2009; 20(3): 325-335.
53. Kumar P., Mounsey J.P., Gehi A.K. et al. Use of a closed loop irrigated catheter in epicardial ablation of ventricular tachycardia // J. Interv. Card. Electrophysiology 2013$ 38(1): 35-42.
54. Wittkampf F.H., Hauer R.N., Robles de Medina E.O. Radiofrequency ablation with a cooled porous electrode catheter // J. Am. Coll. Cardiol. 1988; 11: 17A (abstract).
55. Houmsse M., Daoud E.G. Biophysics and clinical utility of irrigated-tip radiofrequency catheter ablation // Expert Rev. Med. Devices 2012; 9(1): 59-70.
56. Лебедев Д.С., Михайлов Е.Н., Гуреев С.В. и др. Сравнительная эффективность двух методов катетер-ной аблации пароксизмальной фибрилляции предсердий: рандомизированное исследование // Вестник аритмологии 2008; 51: 22-27.
57. Симоненко В.Б., Хубулава Г.Г., чаплюк, А.Л. и др. Новый взгляд на экспертизу профессиональной пригодности больных с высококурабельными аритмиями после высокотехнологичных методов лечения // Военно-медицинский журнал. 2015; 336 (9): 24-33.
58. Стеклов В.И., Серговенцев А.А., Рзаев, Ф.Г,. и др. предикторы фибрилляции предсердий у пациентов с трепетанием предсердий после радиочастотной аблации нижнего перешейка // Вестник аритмологии 2017; 87: 23-28.
59. Nguyen D.T., Gerstenfeld E.P., Tzou W.S. et al. Radiofrequency ablation using an open irrigated electrode cooled with half-normal saline // JACC: Clinical Electrophysiology 2017; 3(10): 1103-1110.
60. Gizurarson S., Spears D., Sivagangabalan G. et al. Bipolar ablation for deep intra-myocardial circuits: human ex vivo development and in vivo experience // Europace 2014; 16: 1684-1688.
61. Мамчур С.Е., Хоменко Е.А., Горбунова Е.В. и др. Качество контакта аблационного электрода с тканью при катетерной РЧА фибрилляции предсердий в зависимости от опыта электрофизиолога // Вестник аритмологии 2015; 80: 5-11.
62. Reddy V.Y., Neuzil P., Kautzner J. et al. Low catheter-tissue contact force results in late PV reconnection-initial results from EFFICAS I // Heart Rhythm 2011; 8: 26
63. Shah D., Lambert H., Langenkamp A. et al. Catheter tip force required for mechanical perforation of porcine cardiac chambers // Europace 2011; 13: 277-283.
64. Neuzil P., Reddy VY, Kautzner J. et al. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I Study // Circ. Arrhythm. Electrophysiol. 2013; 6:.327-333.
65. Peichl P., Kautzner J. Advances in irrigated tip catheter technology for treatment of cardiac arrhythmias // Recent Pat Cardiovasc. Drug Discov. 2013; 8(1): 10-16.
66. Akca F., Zima E., Végh E.M. et al. Radiofrequency ablation at low irrigation flow rates using a novel 12-hole gold open-irrigation catheter // Pacing Clin. Electrophysiology 2013; 36(11): 1373-1381.
67. McCready J., Chow A.W., Lowe M.D. et al. Safety and efficacy of multipolar pulmonary vein ablation catheter vs. irrigated radiofrequency ablation for paroxysmal atrial fibrillation: a randomized multicentre trial // Europace. 2014; 16(8): 1145-1153.
68. Dorfman F., Dietrich C., Costa P. et al. Strategies to improve safety and efficacy of atrial fibrillation ablation using electrode multipolar phased RF PVAC™ Catheter: a case report // Journal of Atrial Fibrillation 2016; 9(3): 37-38.
Рецензия
Для цитирования:
Стеклов В.И., Серговенцев А.А., Рзаев Ф.Г., Емельяненко М.В., Липская М.В., Валуев В.Е., Владимиров Ю.А. РАДИОЧАСТОТНАЯ КАТЕТЕРНАЯ АБЛАЦИЯ: БИОФИЗИЧЕСКИЕ ОСНОВЫ И ПАТОФИЗИОЛОГИЧЕСКИЕ АСПЕКТЫ. Вестник аритмологии. 2018;(94):47-56. https://doi.org/ 10.25760/VA-2018-94-47-65.
For citation:
Steklov V.I., Sergoventsev A.A., Rzaev F.G., Emelyanenko M.V., Lipskaya M.V., Valuev V.E., Vladimirov Yu.A. RADIOFREQUENCY CATHETER ABLATION: BIOPHYSICAL BASIC PRINCIPLES AND PATHOPHYSIOLOGICAL ASPECTS. Journal of Arrhythmology. 2018;(94):47-56. (In Russ.) https://doi.org/ 10.25760/VA-2018-94-47-65.