Preview

Journal of Arrhythmology

Advanced search

Interatrial block and abnormal P-wave electrocardiographic parameters as non-invasive predictors of atrial fibrillation

https://doi.org/10.35336/VA-1329

EDN: VHKELY

Abstract

Aim. To identify noninvasive markers of atrial electrical dysfunction and risk of nonvalvular atrial fibrillation (AF) and to develop a predictive mathematical model to estimate the AF risk based on electrocardiographic (ECG) P-wave parameters during sinus rhythm.

Methods. The study included 211 patients with cardiovascular pathology (aged median 62 [52; 71] years, 67.8% male, NYHA heart failure class I-III). All patients (follow-up median 45 [26; 67] months) underwent a complex of studies: 12-lead ECG, echocardiography, 24-hour ECG monitoring. Based on surface ECG data during sinus rhythm, parameters of atrial electrical activation were assessed such as Morphology, Voltage and P waves duration (MVP) according to integral analysis by MVP score.

Results. During 3.7-year period, 44 (20.8%) patients experienced new-onset sustained AF and 12 (5.69%) patients developed ischemic stroke. As a result of ROC analysis and univariate Cox regression, independent predictors of AF were identified: P-wave prolongation in the DII lead, 3rd degree or advanced interatrial block (aIAB), an increase P-wave terminal force in lead V1 (PTFV1), low-voltage P-wave in the DI lead and сalculated level of abnormal P-wave ≥3 points on the MVP score. Data from multivariate Cox proportional hazards regression analysis confirmed the prognostic significance for three independent predictors of AF: aIAB (hazard ratio (HR) 5.92; 95% confidence interval (CI) [2.48-4.12]; p=0.0001); PTFV1 (HR 1.14; 95% CI [1.04-1.24], p=0.003); low-voltage P-wave in lead DI <0.1 mV (HR 1.03; 95% CI [1.02-1.05]; p=0.0001); and as a result a mathematical model was created to predict AF risk (-2LL =258; χ2=105; p=0.0001). Predictors such as PTFV1 (HR 1.41; 95% CI [1.17-1.72], p=0.0001) and MVP score of abnormal P-waves (HR 1.85; 95% CI [1.27-1.72] 2.70], p=0.001) were associated with a high risk of stroke according to Cox regression model (-2LL= 62.5; χ2=38.4; p <0.001).

Conclusion. Complex of ECG markers of atrial electrical dysfunction such as aIAB, PTFV1, level MVP score of abnormal P-wave and low P-wave voltage allows identifying patients at high risk of AF and ischemic stroke.

About the Authors

T. G. Vaikhanskaya
State Institution «Republican Scientific and Practical Centre «Cardiology»»
Belarus

Tatiyana G. Vaikhanskaya

Minsk, 110b Rose Luxembоurg str.



T. M. Kaptiukh
State Institution «Republican Scientific and Practical Centre «Cardiology»»
Belarus

Minsk, 110b Rose Luxembоurg str.



I. D. Kozlov
State Institution «Republican Scientific and Practical Centre «Cardiology»»
Belarus

Minsk, 110b Rose Luxembоurg str.



A. V. Frolov
State Institution «Republican Scientific and Practical Centre «Cardiology»»
Belarus

Minsk, 110b Rose Luxembоurg str.



References

1. Hindricks G, Potpara T, Nikolaos Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021;42: 373-498. https://doi.org/10.1093/eurheartj/ehaa612.

2. Gopinathannair R., Chen LY., Chung MK., et al. Managing atrial fibrillation in patients with heart failure and reduced ejection fraction: a scientific statement from the American Heart Association. Circ Arrhythmia Electrophysiol. 2021;14: e000078. https://doi.org/10.1161/HAE.0000000000000078.

3. Goette A, Kalman JM, Aguinaga L, et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. Europace. 2016;18(10): 1455-1490. https://doi.org/10.1093/europace/euw161.

4. Goldberger JJ, Arora R, Green D, et al. Evaluating the atrial myopathy underlying atrial fibrillation identifying the arrhythmogenic and thrombogenic substrate. Circulation. 2015;132: 278-291. https://doi.org/10.1161/circulationaha.115.016795.

5. Rivner H, Mitrani RD, Goldberger JJ. Atrial Myopathy Underlying Atrial Fibrillation. Arrhythm Electrophysiol Rev. 2020;9(2): 61-70. https://doi.org/10.15420/aer.2020.13.

6. Vaikhanskaya TG, Kurushko TV, Persianskikh YuA, et al. Atrial cardiomyopathy - a new concept with a long history. Russian Journal of Cardiology. 2020;25(11): 143-1583942. (In Russ.) https://doi.org/10.15829/29/1560-4071-2020-3942.

7. Ciuffo L, Bruña V, Martínez-Sellés M, et al. Association between interatrial block, left atrial fibrosis, and mechanical dyssynchrony: electrocardiography-magnetic resonance imaging correlation. J Cardiovasc Electrophysiol. 2020;31: 1719-1725. https://doi.org/10.1111/jce.14608.

8. Massó-van Roessel A, Escobar-Robledo LA, Dégano IR, et al. Analysis of the association between electrocardiographic P-wave characteristics and atrial fibrillation in the REGICOR study. Rev Esp Cardiol. 2017;70: 841-847. https://doi.org/10.1016/j.rec.2017.02.019.

9. Tiffany Win T, Ambale Venkatesh B, Volpe GJ, et al. Associations of electrocardiographic P-wave characteristics with left atrial function, and diffuse left ventricular fibrosis defined by cardiac magnetic resonance: The PRIMERI Study. Heart Rhythm. 2015;12: 155-162. https://doi.org/10.1016/j.hrthm.2014.09.044.

10. Alexander B, Milden J, Hazim B, et al. New electrocardiographic score for the prediction of atrial fibrillation: the MVP ECG risk score (morphology-voltage-P-wave duration). Ann Noninvasive Electrocardiol. 2019;24: e12669. https://doi.org/10.1111/anec.12669.

11. Maheshwari A, Norby FL, Soliman EZ, et al. Refining prediction of atrial fibrillation risk in the general population with analysis of P-Wave axis (from the Atherosclerosis Risk in Communities Study). Am J Cardiol. 2017;120: 1980-1984. https://doi.org/10.1016/j.amjcard.2017.08.015

12. Rangel MO, O’Neal WT, Soliman EZ. Usefulness of the Electrocardiographic P-Wave Axis as a Predictor of Atrial Fibrillation. Am J Cardiol. 2016;117: 100-104. https://doi.org/10.1016/j.amjcard.2015.10.013

13. Vaikhanskaya TG, Kaptsiukh TM, Frolov AV. Atrial electrical dysfunction as an early predictor of atrial fibrillation in patients with heart failure. Cardiology in Belarus. 2023;15 (5): 599-617. (In Russ.) https://doi.org/10.34883/PI.2023.15.5.001.

14. Rasmussen MU, Fabricius-Bjerre A, Kumarathurai P, et al. Common source of miscalculation and misclassification of P-wave negativity and P-wave terminal force in lead V1. J Electrocardiol. 2019;53: 85-88. https://doi.org/10.1016/j.jelectrocard.2019.01.088.

15. Escobar-Robledo LA, Bayes-de-Luna A, Lupon J. et al. Advanced interatrial block predicts new-onset atrial fibrillation and ischemic stroke in patients with heart failure: The “Bayes’ Syndrome-HF” study. Int J Cardiol. 2018;271: 174-180. https://doi.org/10.1016/j.ijcard.2018.05.050

16. Skov MW, Ghouse J, Kühl JT, et al. Risk prediction of atrial fibrillation based on electrocardiographic interatrial block. J Am Heart Assoc. 2018;7: e008247. https://doi.org/10.1161/JAHA.117.008247

17. Relander A, Hellman T, Vasankari T, et al. Advanced interatrial block predicts ineffective cardioversion of atrial fibrillation: a FinCV2 cohort study. Ann Med. 2021;53: 722-729. https://doi.org/10.1080/07853890.2021.1930139.

18. Nielsen JB, Kühl JT, Pietersen A, et al. P-wave duration and the risk of atrial fibrillation: Results from the Copenhagen ECG Study. Heart Rhythm. 2015;12: 1887-1895. https://doi.org/10.1016/j.hrthm.2015.04.026.

19. Hernandez-Betancor I, Izquierdo-Gomez MM, Garcia-Niebla J, et al. Bayes syndrome and imaging techniques. Curr Cardiol Rev. 2017;13: 263-273. https://doi.org/10.2174/1573403X13666170713122600.

20. Vaikhanskaya TG, Frolov AV. New clinical Bayes syndrome: definitions, epidemiology and clinical significance. Cardiology in Belarus. 2022;14(6): 803-813. (In Russ.) https://doi.org/10.34883/PI.2022.14.6.009.

21. Baturova MA, Platonov PG, Medvedev MM. Interatrial block. Journal of Arrhythmology. 2019;26(4): 39-46. (In Russ.) https://doi.org/10.35336/VA-2019-4-39-46.

22. Tse G, Wong CW, Gong M. et al. Predictive value of inter-atrial block for new onset or recurrent atrial fibrillation: A systematic review and meta-analysis. Int J Cardiol. 2018;250: 152-156.

23. Chen LY, Ribeiro ALP, Platonov PG, et al. P-Wave Parameters and Indices: A Critical Appraisal of Clinical Utility, Challenges, and Future Research - A Consensus Document Endorsed by the International Society of Electrocardiology and the International Society for Holter and Noninvasive Electrocardiology. Circ Arrhythm Electrophysiol. 2022;15: e010435. https://doi.org/10.1161/circep.121.010435.

24. Kreimer F, Mügge A, Gotzmann M. How should I treat patients with subclinical atrial fibrillation and atrial high-rate episodes? Current evidence and clinical importance. Clin Res Cardiol. 2022;111(9): 994-1009. https://doi.org/10.1007/s00392-022-02000-7.

25. Pay L, Yumurtaş AÇ, Tezen O, et al. Efficiency of MVP ECG Risk Score for Prediction of Long-Term Atrial Fibrillation in Patients with ICD for Heart Failure With Reduced Ejection Fraction. Korean Circ J. 2023;53(9): 621-631. https://doi.org/10.4070/kcj.2022.0353

26. Hayıroğlu MI, Çınar T, Selçuk M, et al. The significance of the morphology-voltage-P-wave duration (MVP) ECG score for prediction of in-hospital and long-term atrial fibrillation in ischemic stroke. Journal of Electrocardiology. 2021;69: 44-50. https://doi.org/10.1016/j.jelectrocard.2021.09.006.

27. Silvestrini TL, Burak C, Miranda-Arboleda AF, et al. New pattern of atypical advanced interatrial block. Journal of Electrocardiology. 2023;81: 66-69. https://doi.org/10.1016/j.jelectrocard.2023.08.001.

28. Bayés-de-Luna A, Fiol-Sala M, Martínez-Sellés M, Baranchuk A. Current ECG Aspects of Interatrial Block. Hearts. 2021;2(3): 419-432. https://doi.org/10.3390/hearts2030033.

29. Gutierrez A, Norby FL, Maheshwari A, et al. Association of abnormal P-wave indices with dementia and cognitive decline over 25 years: ARIC-NCS (The Atherosclerosis Risk in Communities Neurocognitive Study). J Am Heart Assoc. 2019;8: e014553. https://doi.org/10.1161/jaha.119.014553.

30. Nielsen JB, Kühl JT, Pietersen A, et al. P-wave duration and the risk of atrial fibrillation: Results from the Copenhagen ECG Study. Heart Rhythm. 2015;12: 1887-1895. https://doi.org/10.1016/j.hrthm.2015.04.026.

31. Jadidi A, Müller-Edenborn B, Chen J, Keyl C, et al. The Duration of the Amplified Sinus-P-Wave Identifies Presence of Left Atrial Low Voltage Substrate and Predicts Outcome After Pulmonary Vein Isolation in Patients with Persistent Atrial Fibrillation. JACC Clin Electrophysiol. 2018;4(4): 531-543. https://doi.org/10.1016/j.jacep.2017.12.001.

32. Baturova МА, Cornefjord G, Carlson J, et al. P-wave characteristics as electrocardiographic markers of atrial abnormality in prediction of incident atrial fibrillation - The Malmö Preventive Project. Journal of Electrocardiology. 2024;82125-130. https://doi.org/10.1016/j.jelectrocard.2023.12.003.


Review

For citations:


Vaikhanskaya T.G., Kaptiukh T.M., Kozlov I.D., Frolov A.V. Interatrial block and abnormal P-wave electrocardiographic parameters as non-invasive predictors of atrial fibrillation. Journal of Arrhythmology. 2024;31(2):24-34. https://doi.org/10.35336/VA-1329. EDN: VHKELY

Views: 756


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8641 (Print)
ISSN 2658-7327 (Online)