Фиброз левого предсердия как электроанатомический субстрат фибрилляции предсердий: возможности количественной оценки перед направлением на катетерную аблацию
https://doi.org/10.35336/VA-1379
EDN: WFADOJ
Аннотация
Статья посвящена роли фиброза левого предсердия (ЛП) при фибрилляции предсердий (ФП) как основы электроанатомического субстрата, определяющего не только устойчивость ФП, но и успех катетерной аблации (КА). В статье подробно рассмотрены молекулярно-клеточные аспекты формирования фиброза ЛП и возможные механизмы аритмогенных эффектов фиброзной ткани, продемонстрированы способы оценки размеров фиброза ЛП в контексте прогнозирования эффективности КА у пациентов с ФП. Представлены современные данные о возможностях использования циркулирующих биомаркеров фиброза в качестве предикторов выраженности фиброза и рецидивов ФП после КА.
Об авторах
А. В. МамаринаРоссия
Мамарина Александра Владиславовна
Томск, ул. Мельникайте, д. 111
Л. У. Мартьянова
Россия
Томск, ул. Мельникайте, д. 111
Т. П. Гизатулина
Россия
Томск, ул. Мельникайте, д. 111
Список литературы
1. Chugh SS, Havmoeller R, Narayanan K, et al. World-wide epidemiology of atrial fibrillation: A global burden of disease 2010 study. Circulation. 2014;129: 837-847. https://https://doi.org/10.1161/CIRCULATIONAHA.113.005119.
2. Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol. 2008;1: 62-73. https://doi.org/10.1161/CIRCEP.107.754564
3. Kottkamp H. Fibrotic atrial cardiomyopathy: a specific disease/syndrome supplying substrates for atrial fibrillation, atrial tachycardia, sinus node disease, AV node disease, and thromboembolic complications. J Cardiovasc. Electrophysiol. 2012;23(7): 797-9. https://https://doi.org/10.1111/j.1540-8167.2012.02341.
4. Gal P, Marrouche NF. Magnetic resonance imaging of atrial fibrosis: redefining atrial fibrillation to a syndrome. Eur Heart J. 2017;38:14-19. https://doi.org/10.1093/eurheartj/ehv514.
5. Akoum N, Morris A, Perry D, et al. Substrate modification is a better predictor of catheter ablation success in atrial fibrillation than pulmonary vein isolation: An LGE-MRI Study. Clin Med Insights Cardiol. 2015;27(9): 25-31. https://doi.org/10.4137/CMC.S22100.
6. Marrouche NF, Wilber D, Hindricks G, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014;311(5): 498-506. https://doi.org/10.1001/jama.2014.3.
7. Kawamura M, Munetsugu Y, Kawasaki S, et al. Type III procollagen-N-peptide as a predictor of persistent atrial fibrillation recurrence after cardioversion. Europace. 2012;14(12): 1719-25. https://doi.org/10.1093/europace/eus162.
8. Nattel S. Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation. JACC Clin Electrophysiol. 2017;3(5): 425-435. https://doi.org/10.1016/j.jacep.2017.03.002.
9. Xintarakou A, Tzeis S, Psarras S, et al. Atrial fibrosis as a dominant factor for the development of atrial fibrillation: facts and gaps. Europace. 2020;22(3): 342-351. https://doi.org/10.1093/europace/euaa009.
10. Fast VG, Kléber AG. Cardiac tissue geometry as a determinant of unidirectional conduction block: Assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model. Cardiovasc Res. 1995;29: 697-707. https://doi.org/10.1016/S0008-6363(96)88643-3.
11. Ten Tusscher KH, Panfilov AV. Influence of diffuse fibrosis on wave propagation in human ventricular tissue. Europace. 2007;9 Suppl 6: vi38-45. https://doi.org/10.1093/europace/eum206.
12. De Bakker JM, van Capelle FJ, Janse MJ, et al. Slow conduction in the infarcted human heart. ‘Zigzag’ course of activation. Circulation. 1993;88(3): 915-26. https://doi.org/10.1161/01.cir.88.3.915.13.
13. Nezlobinsky T, Solovyova O, Panfilov AV. Anisotropic conduction in the myocardium due to fibrosis: The effect of texture on wave propagation. Sci Rep. 2020;10: 1-12. https://doi.org/10.1038/s41598-020-57449-1.
14. Krul SP, Berger WR, Smit NW, et al. Atrial fibrosis and conduction slowing in the left atrial appendage of patients undergoing thoracoscopic surgical pulmonary vein isolation for atrial fibrillation. Circ Arrhythm Electrophysiol. 2015;8(2): 288-295. https://doi.org/10.1161/CIRCEP.114.001752.
15. Hansen BJ, Zhao J, Csepe TA, et al. Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur Heart J. 2015;36(35): 2390-401. https://doi.org/10.1093/eurheartj/ehv233.
16. Hu YF, Chen YJ, Lin YJ, et al. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12(4): 230-43. https://doi.org/10.1038/nrcardio.2015.2.
17. Liao CH, Akazawa H, Tamagawa M, et al. Cardiac mast cells cause atrial fibrillation through PDGF-A-mediated fibrosis in pressure-overloaded mouse hearts. J Clin Invest. 2010;120(1): 242-53. https://doi.org/10.1172/JCI39942.
18. Sagris M, Vardas EP, Theofilis P, et al. Atrial Fibrillation: Pathogenesis, Predisposing Factors, and Genetics. Int J Mol Sci. 2021;23(1): 6. https://doi.org/10.3390/ijms23010006.
19. Bertaud A, Joshkon A, Heim X, et al. Signaling Pathways and Potential Therapeutic Strategies in Cardiac Fibrosis. Int J Mol Sci. 2023;24(2): 1756. https://doi.org/10.3390/ijms24021756.
20. Li CY, Zhang JR, Hu WN, et al. Atrial fibrosis underlying atrial fibrillation (Review). Int J Mol Med. 2021;47(3):9. https://doi.org/10.3892/ijmm.2020.4842.
21. Mahnkopf C, Badger TJ, Burgon NS, et al. Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayedenhanced MRI: Implications for disease progression and response to catheter ablation. Heart Rhythm. 2010;7: 1475-1481. https://doi.org/10.1016/j.hrthm.2010.06.030.
22. Павлов АВ, Гизатулина ТП, Кузнецов ВА. Электроанатомическое биполярное картирование для выявления аритмогенного субстрата при катетерной аблации фибрилляции предсердий. Вестник аритмологии. 2019;26 (4): 32-38. https://doi.org/10.35336/VA-2019-4-32-38.
23. Oakes RS, Badger TJ, Kholmovski EG, et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 2009;119(13): 1758-67. https://doi.org/10.1161/CIRCULATIONAHA.108.811877.
24. Malcolme-Lawes LC, Juli C, Karim R, et al. Automated analysis of atrial late gadolinium enhancement imaging that correlates with endocardial voltage and clinical outcomes: A 2-center study. Heart Rhythm. 2013;10(8): 1184-91. https://doi.org/10.1016/j.hrthm.2013.04.030.
25. Sim I, Bishop M, O’Neill M, et al. Left atrial voltage mapping: defining and targeting the atrial fibrillation substrate. J Interv Card Electrophysiol. 2019;56(3): 213-227. https://doi.org/10.1007/s10840-019-00537-8.
26. Verma A, Wazni OM, Marrouche NF, et al. Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation: an independent predictor of procedural failure. J Am Coll Cardiol. 2005;45(2): 285-92. https://doi.org/10.1016/j.jacc.2004.10.035.
27. Liu Z, Xia Y, Guo C, et al. Low-Voltage Zones as the Atrial Fibrillation Substrates: Relationship With Initiation, Perpetuation, and Termination. Front Cardiovasc Med. 2021;8: 705510. https://doi.org/10.3389/fcvm.2021.705510.
28. Takahashi Y, Yamaguchi T, Otsubo T, et al. Histological validation of atrial structural remodelling in patients with atrial fibrillation. Eur Heart J. 2023;44(35): 3339-3353. https://doi.org/10.1093/eurheartj/ehad396.
29. Kosiuk J, Dinov B, Kornej J, et al. Prospective, multicenter validation of a clinical risk score for left atrial arrhythmogenic substrate based on voltage analysis: DR-FLASH score. Heart Rhythm. 2015;12(11): 2207-12. https://doi.org/10.1016/j.hrthm.2015.07.003.
30. Оршанская ВС, Каменев АВ, Белякова ЛА, и др. Электроанатомический субстрат левого предсердия и его прогностическая ценность при определении риска рецидива фибрилляции предсердий после циркулярной изоляции легочных вен. Результаты проспективного обсервационного наблюдения. Российский кардиологический журнал. 2017;8(148): 82-89. https://doi.org/10.15829/1560-4071-2017-8-82-89.
31. Дедух ЕВ, Яшков МВ, Таймасова ИА, и др. Алгоритм определения степени фиброза при картировании высокой плотности. Вестник аритмологии. 2022;29(3): 29-36. https://doi.org/10.35336/VA-2022-3-04.
32. Begg GA, Karim R, Oesterlein T, et al. Left atrial voltage, circulating biomarkers of fibrosis, and atrial fibrillation ablation. A prospective cohort study. PLoS One. 2018;13(1): e0189936. https://doi.org/10.1371/journal.pone.0189936.
33. Yamaguchi T, Tsuchiya T, Fukui A, et al. Impact of the extent of low-voltage zone on outcomes after voltage-based catheter ablation for persistent atrial fibrillation. J Cardiol. 2018;72(5): 427-433. https://doi.org/10.1016/j.jjcc.2018.04.010.
34. Hijazi Z, Oldgren J, Siegbahn A, et al. Application of Biomarkers for Risk Stratification in Patients with Atrial Fibrillation. Clinical Chemistry. 2017;63(1) :152-64. https://doi.org/10.1373/clinchem.2016.255182
35. Jiang H, Wang W, Wang C, et al. Association of pre-ablation level of potential blood markers with atrial fibrillation recurrence after catheter ablation: a meta-analysis. Europace. 2017;19(3): 392-400. https://doi.org/10.1093/europace/euw088.
36. Sinner MF, Stepas KA, Moser CB, et al. B-type natriuretic peptide and C-reactive protein in the prediction of atrial fibrillation risk: the CHARGE-AF Consortium of community-based cohort studies. Europace. 2014;16: 1426-33. https://doi.org/10.1093/europace/euu175.
37. Patton KK, Ellinor PT, Heckbert SR, et al. N-terminal proB-type natriuretic peptide is a major predictor of the development of atrial fibrillation: the Cardiovascular Health Study. Circulation. 2009;120: 1768-74. https://doi.org/10.1161/CIRCULATIONAHA.109.873265
38. Yuan Y, Nie B, Gao B, et al. Natriuretic peptides as predictors for atrial fibrillation recurrence after catheter ablation: A meta-analysis. Medicine (Baltimore). 2023;102(19): e33704. https://doi.org/10.1097/MD.0000000000033704.
39. Sanada S, Hakuno D, Higgins LJ, et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117: 1538-1549. https://doi.org/10.1172/JCI30634.
40. Wang Z, Cheng L, Zhang J, et al. Serum-Soluble ST2 Is a Novel Biomarker for Evaluating Left Atrial Low-Voltage Zone in Paroxysmal Atrial Fibrillation. Med Sci Monit. 2020;26: e926221. https://doi.org/10.12659/MSM.926221.
41. Liu H, Wang K, Lin Y, et al. Role of sST2 in predicting recurrence of atrial fibrillation after radiofrequency catheter ablation. Pacing Clin Electrophysiol. 2020;43(11): 1235-1241. https://doi.org/10.1111/pace.14029.
42. Wollert KC, Kempf T, Wallentin L. Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clin Chem. 2017;63(1): 140-151. https://doi.org/10.1373/clinchem.2016.255174.
43. Wallentin L, Hijazi Z, Andersson U, et al. ARISTOTLE Investigators. Growth differentiation factor 15, a marker of oxidative stress and inflammation, for risk assessment in patients with atrial fibrillation: insights from the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial. Circulation. 2014;130(21): 1847-58. https://doi.org/10.1161/CIRCULATIONAHA.114.011204.
44. Гизатулина ТП, Мартьянова ЛУ, Белоногов ДВ, и др. Прогнозирование площади низковольтажных зон в левом предсердии у пациентов в неклапанной фибрилляцией предсердий с помощью неинвазивных маркеров. Вестник аритмологии. 2023;30(3): 32-39. https://doi.org/10.35336/VA-1161.
45. Wei Y, Liu S, Yu H, et al. The Predictive Value of Growth Differentiation Factor-15 in Recurrence of Atrial Fibrillation after Catheter Ablation. Mediators of Inflammation. 2020;21: 8360936. https://doi.org/10.1155/2020/8360936
46. Ионин ВА, Заславская ЕЛ, Барашкова ЕИ, и др. Предикторы рецидива фибрилляции предсердий у пациентов с метаболическим синдромом после радиочастотной изоляции устьев легочных вен. Российский кардиологический журнал. 2022;27(3S): 5184. https://doi.org/10.15829/1560-4071-2022-5184.
Рецензия
Для цитирования:
Мамарина А.В., Мартьянова Л.У., Гизатулина Т.П. Фиброз левого предсердия как электроанатомический субстрат фибрилляции предсердий: возможности количественной оценки перед направлением на катетерную аблацию. Вестник аритмологии. 2024;31(3):64-72. https://doi.org/10.35336/VA-1379. EDN: WFADOJ
For citation:
Mamarina A.V., Martyanova L.U., Gizatulina T.P. Left atrial fibrosis as an electroanatomic substrate of atrial fibrillation: possibilities for quantitative assessment. Journal of Arrhythmology. 2024;31(3):64-72. https://doi.org/10.35336/VA-1379. EDN: WFADOJ