Cardiac resynchronization therapy: towards personalized device selection. Results of a two-year prospective study
https://doi.org/10.35336/VA-1518
Abstract
Aim. To conduct a comparative analysis of clinical, instrumental, and laboratory diagnostic methods and to identify factors determining the likelihood of sustained paroxysmal ventricular tachyarrhythmias (VT) in patients with indications for cardiac resynchronization therapy (CRT).
Methods. The study included 124 patients with chronic heart failure (CHF) and an implanted CRT-D system. The median age was 58 (52-63) years. Patients were followed for 24 months. Clinical and demographic characteristics, electrocardiographic data, speckle-tracking echocardiographic parameters, and blood biomarker levels were assessed. The primary endpoint was the occurrence of sustained VT episodes recorded by the implanted device. A multivariate logistic regression model was developed to predict the two-year probability of VT occurrence.
Results. During the follow-up period, 29 patients (23.3%) experienced episodes of sustained VT. Univariate analysis identified seven candidate predictors with the highest potential for reaching the endpoint. These included: clinical factors (presence of coronary artery disease and atrial fibrillation); ECG parameters (modified QRS index >0.6, presence of left bundle branch block (LBBB) according to Strauss criteria); echocardiographic findings (global longitudinal strain ≥ -6%, mitral regurgitation of grade 2 or higher); and laboratory markers (galectin-3 ≥ 12 ng/mL). Based on these variables, a predictive model was developed using binary logistic regression to estimate the two-year risk of VT in patients with CRT indications. The Strauss LBBB criterion, although statistically significant in univariate analysis, was not included in the final model. At a regression function cut-off value of 0.228, the model demonstrated a diagnostic accuracy of 73.6% (sensitivity - 86.2%, specificity - 69.6%). The area under the ROC curve was 0.779, which, according to expert grading, indicates good model performance.
Conclusion. The study identified several independent predictors of sudden cardiac death risk in patients with implanted CRT-D devices and enabled the construction of a multifactorial prognostic model. The findings suggest the potential for developing a personalized algorithm for device selection.
About the Authors
D. A. ZorinRussian Federation
Zorin Dmitry
Astrakhan, 121 Bakinskaya str.
Astrakhan, 4 Pokrovskaya Roscha str.
N. N. Ilov
Russian Federation
Astrakhan, 121 Bakinskaya str.
Astrakhan, 4 Pokrovskaya Roscha str.
I. R. Karimov
Russian Federation
Astrakhan, 4 Pokrovskaya Roscha str.
A. A. Nechepurenko
Russian Federation
Astrakhan, 121 Bakinskaya str.
N. P. Zorina
Russian Federation
Astrakhan, 6 L. Tolstoy str.
References
1. Khan MS, Shahid I, Bennis A, et al. Global epidemiology of heart failure. Nat Rev Cardio.l 2024;21: 717-34. https://doi.org/10.1038/s41569-024-01046-6.
2. Postol AS, Neminushchiy NM, Antipov GN, Ivanchenko AV, et al. Factors that Determined a Positive Response to Resynchronization Therapy in Patients With Chronic Heart Failure and Cardiac Dyssynchrony. One Center Experience. Kardiologiia. 2024;64(7): 31-39. (In Russ.) https://doi.org/10.18087/cardio.2024.7.n2627.
3. Glikson M, Nielsen JC, Kronborg MB, et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: Developed by the Task Force on cardiac pacing and cardiac resynchronization therapy of the European Society of Cardiology (ESC) With the special contribution of the European Hear. Eur Heart J. 2021;42: 3427-520. https://doi.org/10.1093/eurheartj/ehab364.
4. Lebedev DS, Mikhailov EN, Neminuschiy NM, еt al. Ventricular arrhythmias. Ventricular tachycardias and sudden cardiac death. 2020 Clinical guidelines. Russian Journal of Cardiology. 2021;26(7): 4600. (In Russ.). https://doi:10.15829/1560-4071-2021-4600.
5. Barra S, Providência R, Boveda S, et al. Device complications with addition of defibrillation to cardiac resynchronisation therapy for primary prevention. Heart. 2018;104: 1529-35. https://doi.org/10.1136/heartjnl-2017-312546.
6. Devesa Neto V, Costa G, Santos LF, et al. Systematic review and meta-analysis comparing cardiac resynchronization therapy with versus without defibrillation in patients with non-ischemic cardiomyopathy. EP Eur. 2024;26: euae102.488. https://doi.org/10.1093/europace/euae102.488.
7. Tereshchenko SN, Galyavich AS, Uskach TM, et al. 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11): 4083. (In Russ.). https://doi:10.15829/1560-4071-2020-4083.
8. Krueger S, Kass DA, Marco T De, et al. Cardiac-Resynchronization Therapy with or without an Implantable Defibrillator in Advanced Chronic Heart Failure 2004:2140-50.
9. Younis A, Goldberger JJ, Kutyifa V, et al. Predicted benefit of an implantable cardioverter-defibrillator: the MADIT-ICD benefit score. Eur Heart J. 2021;42: 1676-84. https://doi.org/10.1093/eurheartj/ehaa1057.
10. Bazylev VV, Ushakov RYu, Durmanov SS, et al. Prognostic value of delayed gadolinium enhancement on cardiac magnetic resonance imaging in patients with ischemic cardiomyopathy and an implanted cardioverter-defibrillator. Journal of Arrhythmology. 2024;31(2): 35-43 (in Russ). https://doi.org/https://doi.org/10.35336/VA-1260.
11. Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022;43: 3997-4126. https://doi.org/10.1093/eurheartj/ehac262.
12. Varma N, Lappe J, He J, Niebauer M, et al. Sex-Specific Response to Cardiac Resynchronization Therapy: Effect of Left Ventricular Size and QRS Duration in Left Bundle Branch Block. JACC Clin Electrophysiol. 2017;3: 844-53. https://doi.org/10.1016/j.jacep.2017.02.021.
13. Frodi DM, Diederichsen SZ, Xing LY, et al. Incidence and risk factors for first and recurrent ICD shock therapy in patients with an implantable cardioverter defibrillator. J Interv Card Electrophysiol. 2025;68: 125-39. https://doi.org/10.1007/s10840-024-01873-0.
14. Moss AJ, Hall WJ, Cannom DS, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361: 1329-38. https://doi.org/10.1056/NEJMoa0906431.
15. Li X, Fan X, Li S, et al. A Novel Risk Stratification Score for Sudden Cardiac Death Prediction in Middle-Aged, Nonischemic Dilated Cardiomyopathy Patients: The ESTIMATED Score. Can J Cardiol. 2020;36: 1121-9. https://doi.org/10.1016/j.cjca.2019.11.009.
16. Reeder HT, Shen C, Buxton AE, et al. Joint Shock/ Death Risk Prediction Model for Patients Considering Implantable Cardioverter-Defibrillators. Circ Cardiovasc Qual Outcomes. 2019;12:e005675. https://doi.org/10.1161/CIRCOUTCOMES.119.005675.
17. Mozaffarian D, Anker SD, Anand I, et al. Prediction of mode of death in heart failure: the Seattle Heart Failure Model. Circulation. 2007;116: 392-8. https://doi. org/10.1161/CIRCULATIONAHA.106.687103.
18. Ido G, K. AM, Wojciech Z, et al. QRS Morphology and the Risk of Ventricular Tachyarrhythmia in Cardiac Resynchronization Therapy Recipients. JACC Clin Electrophysiol. 2024;10: 16-26. https://doi.org/10.1016/j.jacep.2023.09.018.
19. Ilov NN, Stompel DR, Palnikova OV, Nechepurenko AA. Echocardiography parameter for evaluation of various effects of cardiac resynchronization therapy. Russian Journal of Cardiology and Cardiovascular Surgery. 2022;15(1): 19‑25. (In Russ.) https://doi.org/10.17116/kardio20221501119.
20. Lai Y, Yoshimura H, Zakkak N, et al. Causes of death in patients with atrial fibrillation in the UK: a nationwide electronic health record study. Eur Hear J Open. 2024;5: oeae103. https://doi.org/10.1093/ehjopen/oeae103.
21. Fawzy AM, Bisson A, Bodin A, et al. Atrial Fibrillation and the Risk of Ventricular Arrhythmias and Cardiac Arrest: A Nationwide Population-Based Study. J Clin Med. 2023;12. https://doi.org/10.3390/jcm12031075.
22. Dzeshka MS, Lip GYH, Snezhitskiy V, Shantsila E. Cardiac Fibrosis in Patients With Atrial Fibrillation: Mechanisms and Clinical Implications. J Am Coll Cardiol. 2015;66: 943-59. https://doi.org/10.1016/j. jacc.2015.06.1313.
23. Centurión OA, Scavenius KE, García LB, et al. Atrioventricular nodal catheter ablation in atrial fibrillation complicating congestive heart failure. J Atr Fibrillation. 2018;11: 1-8. https://doi.org/10.4022/jafib.2013.
24. Jaiswal V, Taha AM, Joshi A, et al. Implantable cardioverter defibrillators for primary prevention in patients with ischemic and non-ischemic cardiomyopathy: A meta-analysis. Curr Probl Cardiol. 2024;49: 102198. https://doi.org/10.1016/j.cpcardiol.2023.102198.
25. Amoni M, Dries E, Ingelaere S, et al. Ventricular Arrhythmias in Ischemic Cardiomyopathy-New Avenues for Mechanism-Guided Treatment. Cells. 2021;10. https://doi. org/10.3390/cells10102629. 26. Masarone D, Limongelli G, Ammendola E, et al. Stratification of Sudden Cardiac Death in Patients with Heart Failure: An update. J Clin Med. 2018;7. https://doi.org/10.3390/jcm7110436.
26. Stewart RA, Young AA, Anderson C, et al. Relationship between QRS duration and left ventricular mass and volume in patients at high cardiovascular risk. Heart. 2011;97: 1766-70. https://doi.org/10.1136/heartjnl-2011-300297.
27. Michalski B, Stankovic I, Pagourelias E, et al. Relationship of Mechanical Dyssynchrony and LV Remodeling With Improvement of Mitral Regurgitation After CRT. JACC Cardiovasc Imaging. 2022;15: 212-20. https://doi.org/10.1016/j.jcmg.2021.08.010.
28. Medvedofsky D, Arany-Lao-Kan G, McNitt S, et al. Predictive value of global longitudinal strain by left ventricular ejection fraction. ESC Hear Fail. 2023;10: 1937- 47. https://doi.org/https://doi.org/10.1002/ehf2.14193.
29. Jang SY. Application of Global Longitudinal Strain as a Parameter of Left Ventricular Systolic Function in Echocardiography. Clin Ultrasound. 2023;8: 53-8. https://doi. org/10.18525/cu.2023.8.2.53.
30. Nikoo MH, Naeemi R, Moaref A, Attar A. Global longitudinal strain for prediction of ventricular arrhythmia in patients with heart failure. ESC Hear Fail. 2020;7: 2956- 61. https://doi.org/10.1002/ehf2.12910.
31. Biering-Sørensen T, Knappe D, Pouleur A-C, et al. Regional Longitudinal Deformation Improves Prediction of Ventricular Tachyarrhythmias in Patients With Heart Failure With Reduced Ejection Fraction. Circ Cardiovasc Imaging. 2017;10: e005096. https://doi.org/10.1161/CIRCIMAGING.116.005096.
32. Lopez-Andrès N, Rossignol P, Iraqi W, et al. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. Eur J Heart Fail. 2012;14: 74-81. https://doi.org/10.1093/eurjhf/hfr151.
33. Makimoto H, Müller P, Denise K, et al. Clinical Impact of Circulating Galectin-3 on Ventricular Arrhythmias and Heart Failure Hospitalization Independent of Prior Ventricular Arrhythmic Events in Patients with Implantable Cardioverter-defibrillators. Intern Med 2022;61: 969- 77. https://doi.org/10.2169/internalmedicine.7886-21.
34. Zaborska B, Sikora-Frąc M, Smarż K, et al. The Role of Galectin-3 in Heart Failure-The Diagnostic, Prognostic and Therapeutic Potential-Where Do We Stand? Int J Mol Sci. 2023;24. https://doi.org/10.3390/ijms241713111.
Review
For citations:
Zorin D.A., Ilov N.N., Karimov I.R., Nechepurenko A.A., Zorina N.P. Cardiac resynchronization therapy: towards personalized device selection. Results of a two-year prospective study. Journal of Arrhythmology. 2025;32(2):52-61. https://doi.org/10.35336/VA-1518