Новые электрокардиографические маркеры внезапной сердечной смерти
https://doi.org/10.35336/VA-1550
Аннотация
Среди исследований проблемы ЭКГ-стратификации риска внезапной сердечной смерти и жизнеугрожающих желудочковых аритмий представляют интерес новые подходы к анализу ЭКГ-данных и маркеров электрической нестабильности миокарда на их основе. В частности, заслуживают внимания показатели, получаемые с помощью векторного, частотного и нелинейного анализа ЭКГ-данных, продемонстрировавшие ценность в качестве предикторов опасных желудочковых аритмий и внезапной сердечной смерти.
Об авторах
Д. А. СтепановРоссия
Степанов Данила Александрович
Санкт-Петербург, ул. Аккуратова, д. 2
А. А. Татаринова
Россия
Санкт-Петербург, ул. Аккуратова, д. 2
А. П. Немирко
Россия
Санкт-Петербург, ул. Профессора Попова, д. 5, лит. Ф
Л. А. Манило
Россия
Санкт-Петербург, ул. Профессора Попова, д. 5, лит. Ф
Список литературы
1. Степанов ДА, Татаринова АА. ЭКГ-стратификация риска внезапной сердечной смерти и жизнеугрожающих желудочковых аритмий. Вестник аритмологии. 2024;31(1): 77-91 https://doi.org/10.35336/VA-1213.
2. Nonlinear Biomedical Signal Processing / еd. by Metin Akay. Vol. 2. Dynamic Analysis and Modelling. New York: IEEE; 2001.
3. Немирко АП, Манило ЛА, Калиниченко АН. Математический анализ биомедицинских сигналов и данных. Москва 2017 ISBN 978-5-9221-1720-3.
4. Wilson FN, Macleod AG, Barker PS, et al. The determination and the significance of the areas of the ventricular deflections of the electrocardiogram. Am Heart J. 1934;10: 46-61.
5. Tereshchenko LG, Cheng A, Fetics BJ, et al. Ventricular arrhythmia is predicted by sum absolute QRST integral but not by QRS width. J Electrocardiol. 2010;43(6): 548-52. https://doi.org/10.1016/j.jelectrocard.2010.07.013.
6. Tereshchenko LG, Cheng A, Fetics BJ, et al. A new electrocardiogram marker to identify patients at low risk for ventricular tachyarrhythmias: sum magnitude of the absolute QRST integral. J Electrocardiol. 2011;44: 208-16. https://doi.org/10.1016/j.jelectrocard.2010.08.012.
7. Tereshchenko LG, McNitt S, Han L, et al. ECG marker of adverse electrical remodeling post-myocardial infarction predicts outcomes in MADIT II study. PLoS One. 2012;7(12): e51812. https://doi.org/10.1371/journal.pone.0051812.
8. Oehler A, Feldman T, Henrikson CA, et al. QRS-T angle: a review. Ann Noninvasive Electrocardiol. 2014;19: 534-42. https://doi.org/10.1111/anec.12206.
9. Perez-Alday EA, Bender A, German D, et al. Dynamic predictive aCCC Curacy of electrocardiographic biomarkers of sudden cardiac death within a survival framework: The Atherosclerosis Risk in Communities (ARIC) study. BMC Cardiovasc Disord. 2019;19(1): 255. https://doi.org/10.1186/s12872-019-1234-9.
10. Waks JW, Sitlani CM, Soliman EZ, et al. Global Electric Heterogeneity risk score for prediction of sudden cardiac death in the general population: the Atherosclerosis Risk in Communities (ARIC) and Cardiovascular Health (CHS) Studies. Circulation. 2016;133(23): 2222-34. https://doi.org/10.1161/CIRCULATIONAHA.116.021306.
11. Waks JW, Hamilton C, Das S, et al. Improving sudden cardiac death risk stratification by evaluating electrocardiographic measures of global electrical heterogeneity and clinical outcomes among patients with implantable cardioverter-defibrillators: rationale and design for a retrospective, multicenter, cohort study. J Interv Card Electrophysiol. 2018;52(1): 77-89. https://doi.org/10.1007/s10840-018-0342-2.
12. Waks JW, Haq KT, Tompkins C, et al. Competing risks in patients with primary prevention implantable cardioverter-defibrillators: Global Electrical Heterogeneity and Clinical Outcomes study. Heart Rhythm. 2021;18(6): 977- 86. https://doi.org/10.1016/j.hrthm.2021.03.006.
13. Rizas KD, Nieminen T, Barthel P et al. Sympathetic activity-associated periodic repolarization dynamics predict mortality following myocardial infarction. J Clin Invest. 2014;124(4): 1770-80. https://doi.org/10.1172/JCI70085.
14. Rizas KD, McNitt S, Hamm W, et al. Prediction of sudden and non-sudden cardiac death in post-infarction patients with reduced left ventricular ejection fraction by periodic repolarization dynamics: MADIT-II substudy. Eur Heart J. 2017;38(27): 2110-8. https://doi.org/10.1093/eurheartj/ehx161.
15. Palacios S, Cygankiewicz I, Bayés de Luna A, et al. Periodic repolarization dynamics as predictor of risk for sudden cardiac death in chronic heart failure patients. Sci Rep. 2021;11(1): 20546. https://doi.org/10.1038/s41598-021-99861-1.
16. Burattini L, Giuliani C. T‐wave frequency content evaluation in healthy subjects and patients affected by myocardial infarction. In: Signal Processing: New Research (ed. Naik GR). NY 2013: 79-93.
17. Langner PH, Jr., Geselowitz DB, Mansure FT, et al. High-frequency components in the electrocardiograms of normal subjects and of patients with coronary heart disease. Am Heart J. 1961;62(6): 746-55. https://doi.org/10.1016/0002-8703(61)90661-5.
18. Giuliani C, Agostinelli A, Fioretti S, et al. Abnormal repolarization in the acute myocardial infarction patients: a frequency-based characterization. Open Biomed Eng J. 2014;8: 42-51. https://doi.org/10.2174/1874120701408010042.
19. Giuliani C, Swenne CA, Man S, et al. Predictive power of f99 repolarization index for the oCCC Currence of ventricular arrhythmias. Ann Noninvasive Electrocardiol. 2016;21(2): 152-60. https://doi.org/10.1111/anec.12274.
20. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991;88(6): 2297-301. https://doi.org/10.1073/pnas.88.6.2297.
21. Pincus SM. Approximate entropy in cardiology. Herzschr Elektrophys. 2000;11: 139-50. https://doi.org/10.1007/s003990070033.
22. Richman JS., Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6): 2039-49. https://doi.org/10.1152/ajpheart.2000.278.6.H2039.
23. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89(6): 068102. https://doi.org/10.1103/PhysRevLett.89.068102.
24. Kobayashi M, Musha T. 1/f fluctuation of heartbeat period. IEEE Trans Biomed Eng. 1982;29(6): 456-7. https://doi.org/10.1109/TBME.1982.324972.
25. Goldberger AL. Fractal electrodynamics of the heartbeat. Ann N Y Acad Sci. 1990;591: 402-9. https://doi.org/10.1111/j.1749-6632.1990.tb15104.x.
26. Peng CK, Havlin S, Stanley HE, et al. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5(1): 82-7. https://doi.org/10.1063/1.166141.
27. Huikuri HV, Mäkikallio TH, Peng CK, et al. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation. 2000;101(1): 47-53. https://doi.org/10.1161/01.cir.101.1.47.
28. Mäkikallio TH, Huikuri HV, Mäkikallio A, et al. Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. J Am Coll Cardiol. 2001;37(5): 1395-402. https://doi.org/10.1016/s0735-1097(01)01171-8.
29. Rohila A, Sharma A. Detection of sudden cardiac death by a comparative study of heart rate variability in normal and abnormal heart conditions. J Appl Biomed. 2020;40(3): 1-15. https://doi.org/10.1016/j.bbe.2020.06.003.
30. Yan SP, Song X, Wei L, et al. Performance of heart rate adjusted heart rate variability for risk stratification of sudden cardiac death. BMC Cardiovasc Disord. 2023;23(1): 144. https://doi.org/10.1186/s12872-023-03184-0.
31. Hernesniemi JA, Pukkila T, Molkkari M, et al. Prediction of sudden cardiac death with ultra-short-term heart rate fluctuations. JACCC C Clin Electrophysiol. 2024;10(9): 2010-20. https://doi.org/10.1016/j.jacep.2024.04.018.
32. Ebrahimzadeh E, Pooyan M, Bijar A. A novel approach to predict sudden cardiac death (SCD) using nonlinear and time-frequency analyses from HRV signals. PLoS One. 2014;9(2): e81896. https://doi.org/10.1371/journal.pone.0081896
33. Ebrahimzadeh E, Fayaz F, Ahmadi F, et al. Linear and nonlinear analyses for detection of sudden cardiac death (SCD) using ECG and HRV signals. Trends Res. 2018;1: 1-8. https://doi.org/10.15761/tr.1000105.
34. Ebrahimzadeh E, Foroutan A, Shams M, et al. An optimal strategy for prediction of sudden cardiacdeath through a pioneering feature-selection approach from HRV signal. Comput Methods Programs Biomed. 2019;169: 19-36. https://doi.org/10.1016/j.cmpb.2018.12.001.
35. Shi M, He H, Geng W, et al. Early detection of sudden cardiac death by using ensemble empirical mode decomposition-based entropy and classical linear features from heart rate variability signals. Front Physiol. 2020;11: 118. https://doi.org/10.3389/fphys.2020.00118.
36. Yang J, Sun Z, Zhu W, et al. Intelligent prediction of sudden cardiac death based on multi-domain feature fusion of heart rate variability signals. EURASIP J Adv Signal Process. 2023;32: 1-15. https://doi.org/10.1186/s13634-023-00992-6.
37. DeMazumder D, Limpitikul WB, Dorante M, et al. Entropy of cardiac repolarization predicts ventricular arrhythmias and mortality in patients receiving an implantable cardioverter-defibrillator for primary prevention of sudden death. Europace. 2016;18(12): 1818-28. https://doi.org/10.1093/europace/euv399.
38. Cheng A, Dalal D, Butcher B, et al. Prospective Observational Study of Implantable Cardioverter‐Defibrillators in primary prevention of sudden cardiac death: study design and cohort description. J Am Heart Assoc. 2013;2(1): e000083. https://doi.org/10.1161/JAHA.112.000083.
39. Levy WC, Mozaffarian D, Linker DT, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113: 1424-33. https://doi.org/10.1161/CIRCULATIONAHA.105.584102.
40. DeMazumder D, Lake DE, Cheng A, et al. Dynamic analysis of cardiac rhythms for discriminating atrial fibrillation from lethal ventricular arrhythmias. Circ Arrhythm Electrophysiol. 2013;6: 555-61. https://doi.org/10.1161/CIRCEP.113.000034.
41. Perkiomaki JS, Couderc JP, Daubert JP, et al. Temporal complexity of repolarization and mortality in patients with implantable cardioverter defibrillators. Pacing Clin Electrophysiol. 2003;26: 1931-6. https://doi.org/10.1046/j.1460-9592.2003.00298.x.
42. Murugappan M, Murugesan L, Jerritta S, et al. Sudden cardiac arrest (SCA) prediction using ECG morphological features. Arab J Sci Eng. 2020;46(2): 947-61. https://doi.org/10.1007/s13369-020-04765-3.
43. Buchman TG. Nonlinear dynamics, complex systems, and the pathobiology of critical illness. Curr Opin Crit Care. 2004;10(5): 378-82. https://doi.org/10.1097/01.CCCCx.0000139369.65817.b6.
44. Ivanov PCh, Rosenblum MG, Peng CK, et al. Scaling and universality in heart rate variability distributions. Physica A. 1998;249: 587-93. https://doi.org/10.1016/s0378-4371(97)00522-0.
45. Rigoli LM, Lorenz T, Coey C, et al. Co-actors exhibit similarity in their structure of behavioural variation that remains stable across range of naturalistic activities. Sci Rep. 2020;10(1): 6308. https://doi.org/10.1038/s41598-020-63056-x.
46. The Colors of Noise. Wikimedia Commons, 2015. ACCC Cessed 2025-08-02. Available from https://commons.wikimedia.org/wiki/File:The_Colors_of_Noise.png.
Рецензия
Для цитирования:
Степанов Д.А., Татаринова А.А., Немирко А.П., Манило Л.А. Новые электрокардиографические маркеры внезапной сердечной смерти. Вестник аритмологии. 2025;32(3):e1-e14. https://doi.org/10.35336/VA-1550
For citation:
Stepano D.A., Tatarinova A.A., Nemirko A.P., Manilo L.A. Novel electrocardiographic risk predictors of sudden cardiac death. Journal of Arrhythmology. 2025;32(3):e1-e14. (In Russ.) https://doi.org/10.35336/VA-1550