Preview

Journal of Arrhythmology

Advanced search

Intraoperative esophageal temperature monitoring during cryoballoon ablation in patients with atrial fibrillation

https://doi.org/10.35336/VA-1557

Abstract

Aim. To study the frequency of a significant decrease in the esophageal temperature during the standard and “extended” cryoballoon ablation (CBA) procedure in patients with paroxysmal and persistent atrial fibrillation (AF).

Methods. The study included 160 patients (median age 66 [57;70] years, 90 [56.3%] male) with symptomatic paroxysmal and persistent AF. 139 (80.0%) patients with paroxysmal AF underwent pulmonary vein (PV) CBA, and 21 (20.0%) patients with persistent AF underwent “extended” PV CBA in combination with cryoablation of the left atrial posterior wall. At all stages of CBA exposure, esophageal temperature was assessed using the Astrocard Esosafety multichannel esophageal temperature monitoring system (MTP) (Astrocard, JSC Meditek). The criterion for stopping the CBA was considered to be a decrease in temperature below 20 °C.

Results. Electrical isolation of PV was achieved in all 160 patients with CBA. In the group of standard CBA PV (n=139), the temperature < 20 °C was observed significantly more often than in patients with a “central” esophagus (81% vs. 5.7%, p < 20 °C in MTP was determined in 22 (16%) patients, with an average value of 17.23±1.74 °C. In 13 of 22 (59%) patients the temperature < 20 °C in MTP was recorded with CBA of the left lower PV. In the group of “extended” CBA (n=21), the temperature < 20 °C in MTP was determined in 18 (86%) patients, with an average value of 17.1±0.6 °C. When evaluating the fluoroscopic options for the location of the MTP sensor in the esophagus relative to PV, the esophagus of “central localization” was determined in 105 (76%) patients, “left localization” in 21 (15%) patients, and “right localization” in 13 (9%) patients. In patients with a “left-sided” esophagus a decrease in temperature < 20 °C was observed significantly more often than in patients with a “central” esophagus (81% vs. 5.7%, p < 0.05 according to the Fisher exact test). No serious complications were observed during the follow-up period after CBA.

Conclusion. Temperature monitoring using the “Astrocard Esosafety” system allows us to assess the dynamics of temperature changes in the esophagus during standard and “extended” CBA of the LA, providing important information for selecting ablation strategies 

About the Authors

P. S. Novikov
FSBI “National Medical Research Center of Cardiology” of the MH RF; Joint Stock Company “Meditek”
Russian Federation

Novikov Petr

Moscow, 15a Akademika Chazova str.;

Moscow, 6/2 Burakova str.



N. Yu. Mironov
FSBI “National Medical Research Center of Cardiology” of the MH RF; Joint Stock Company “Meditek”
Russian Federation

Moscow, 15a Akademika Chazova str.;

Moscow, 6/2 Burakova str.



P. K. Pahomenko
FSBI “National Medical Research Center of Cardiology” of the MH RF; Joint Stock Company “Meditek”
Russian Federation

Moscow, 15a Akademika Chazova str.;

Moscow, 6/2 Burakova str.



A. V. Bezdelev
FSBI “National Medical Research Center of Cardiology” of the MH RF; Joint Stock Company “Meditek”
Russian Federation

Moscow, 15a Akademika Chazova str.;

Moscow, 6/2 Burakova str.



E. B. Maykov
FSBI “National Medical Research Center of Cardiology” of the MH RF; Joint Stock Company “Meditek”
Russian Federation

Moscow, 15a Akademika Chazova str.;

Moscow, 6/2 Burakova str.



References

1. Golitsyn SP, Golukhova EZ, Mikhailov EN, et al. Atrial fibrillation and flutter. Clinical guidelines 2025. Russian Journal of Cardiology. 2025;30(11): 6668. (In Russ.). https://doi.org/10.15829/1560-4071-2025-6668.

2. Joglar JA, Chung MK, Armbruster AL, et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2024;149(1): e1-e156. https://doi.org/10.1161/CIR.0000000000001193.

3. Gupta T, Cheema N, Randhawa A, et al. Translational anatomy of the left atrium and esophagus as relevant to the pulmonary vein antral isolation for atrial fibrillation. Surg Radiol Anat. 2020;42(4): 367-376. https://doi.org/10.1007/s00276-019-02327-3.

4. Bunch TJ, May HT, Crandall BG, et al. Intracardiac ultrasound for esophageal anatomic assessment and localization during left atrial ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2013;24(1): 33-9. https://doi.org/10.1111/j.1540-8167.2012.02441.x.

5. Jang SW, Kwon BJ, Choi MS, et al. Computed tomographic analysis of the esophagus, left atrium, and pulmonary veins: implications for catheter ablation of atrial fibrillation. J Interv Card Electrophysiol. 2011;32: 1-6. https://doi.org/10.1007/s10840-011-9594-9.

6. Tilz RR, Schmidt V, Pürerfellner H, Maury P, et al. A worldwide survey on incidence, management, and prognosis of oesophageal fistula formation following atrial fibrillation catheter ablation: the POTTER-AF study. Eur Heart J. 2023;44(27): 2458-2469. https://doi.org/10.1093/eurheartj/ehad250.

7. Halm U, Gaspar T, Zacha¨us M, et al. Thermal esophageal lesions after radiofrequency catheter ablation of left atrial arrhythmias. Am J Gastroenterol. 2010;105(3): 551-6 https://doi.org/10.1038/ajg.2009.625.

8. Knopp H, Halm U, Lamberts R, et al. Incidental and ablation-induced findings during upper gastrointestinal endoscopy in patients after ablation of atrial fibrillation: a retrospective study of 425 patients. Heart Rhythm. 2014;11: 574-8. https://doi.org/10.1016/j.hrthm.2014.01.010.

9. Lakkireddy D, Reddy YM, Atkins D, et al. Effect of atrial fibrillation ablation on gastric motility: the atrial fibrillation gut study. Circ Arrhythm Electrophysiol. 2015;8: 531- 6. https://doi.org/10.1161/CIRCEP.114.002508.

10. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14(10): e275-e444. https://doi.org/10.1016/j.hrthm.2017.05.012.

11. Aryana A, Baker JH, Espinosa Ginic MA, et al. Posterior wall isolation using the cryoballoon in conjunction and parameters that potentially reduce the risk of thermal damage to the esophagus. with pulmonary vein ablation is superior to pulmonary vein isolation alone in patients with persistent atrial fibrillation: A multicenter experience. Heart Rhythm. 2018;15(8): 1121- 1129. https://doi.org/10.1016/j.hrthm.2018.05.014.

12. Fürnkranz A, Bordignon, S, Böhmig, M., et al. Reduced incidence of esophageal lesions by luminal esophageal temperature-guided second-generation cryoballoon ablation. Heart Rhythm. 2015;12(2): 268-274. https://doi.org/10.1016/j.hrthm.2014.10.033.

13. Deiss S, Metzner A, Ouyang F, et al. Incidence of significant delayed esophageal temperature drop after cryoballoon-based pulmonary vein isolation. Journal of Cardiovascular Electrophysiology. 2016; 27:913-917. https://doi.org/10.1111/jce.13008.

14. Poty H, Saoudi N, Aziz AA, et al. Radiofrequency catheter ablation of type I atrial flutter. Prediction of late success by electrophysiological criteria. Circulation 1995;92: 1389-1392. https://doi.org/10.1161/01.cir.92.6.1389.

15. Cauchemez B, Haissaguerre M, Fisher B, et al. Electrophysiological effects of catheter ablation of inferior vena cava-tricuspid annulus isthmus in common atrial flutter. Circulation 1996;93: 284-329. https://doi.org/10.1161/01.cir.93.2.284.

16. Korobchenko LE, Lyubimtseva TA, Davtyan KV, et al. Russian registry of cryoballon ablation of atrial fibrillation: characteristics of the procedure and features of patient’s management. Journal of Arrhythmology. 2025;32(1): 5-16. (in Russ.) https://doi.org/10.35336/ VA-1447.

17. Tzeis S, Gerstenfeld EP, Kalman J, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2024;21(9): e31-e149. https://doi.org/10.1016/j.hrthm.2024.03.017.

18. Sorokin IN, Ayvazyan SA, Sapelnikov OV, Gorshenin KG, Buslaeva SI, Dvornikova MI. A new method for prevention of the esophageal lesion following cryoballoon ablation for atrial fibrillation. Russian Cardiology Bulletin. 2022;17(1): 52 57. (In Russ.) https://doi.org/10.17116/Cardiobulletin20221701152.

19. Kuck KH, Fürnkranz A, Chun KR, et al. FIRE AND ICE Investigators. Cryoballoon or radiofrequency ablation for symptomatic paroxysmal atrial fibrillation: reintervention, rehospitalization, and quality-of-life outcomes in the FIRE AND ICE trial. Eur Heart J. 2016; 37(38): 2858- 2865. https://doi.org/10.1093/eurheartj/ehw285.

20. Ahmed H, Neuzil P, d’Avila A, et al. The esophageal effects of cryoenergy during cryoablation for atrial fibrillation. Heart Rhythm. 2009;6(7): 962-9. https://doi.org/10.1016/j.hrthm.2009.03.051.

21. Khairy P, Dubuc M. Transcatheter cryoablation part I: preclinical experience. Pacing Clin Electrophysiol. 2008;31(1): 112-20. https://doi.org/10.1007/s10840-023-01492-1.

22. John RM, Kapur S, Ellenbogen KA, Koneru JN. Atrioesophageal fistula formation with cryoballoon ablation is most commonly related to the left inferior pulmonary vein. Heart Rhythm. 2017;14(2): 184-189. https://doi.org/10.1016/j.hrthm.2016.10.018.

23. Lemola K, Sneider M, Pelosi F Jr, et al. Computed tomographic analysis of the anatomy of the left atrium and the esophagus: implications for left atrial catheter ablation. Circulation. 2004;14;110(24): 3655-60. https://doi.org/10.1161/01.

24. Abdulsalam NM, Sridhar AM, Tregoning DM, et al. Esophageal luminal temperature monitoring using a multi-sensor probe lowers the risk of esophageal injury in cryo and radiofrequency catheter ablation for atrial fibrillation. J Interv Card Electrophysiol 66, 1827-1835 (2023). https://doi.org/10.1007/s10840-023-01492-1.

25. Ajvaz’jan SA, Artjuhina EA, Gorev MV, et al. Practical recommendations for performing cryoballoon isolation of pulmonary veins. M.: Academy of Postgraduate Education of the Federal Medical and Biological Agency of Russia; 2020. (In Russ.)

26. Chun KR, Stich M, Fürnkranz A, et al. Individualized cryoballoon energy pulmonary vein isolation guided by real-time pulmonary vein recordings, the randomized ICE-T trial. Heart Rhythm. 2017;14(4): 495-500. https://doi.org/10.1016/j.hrthm.2016.12.014.

27. Ciconte G, Mugnai G, Sieira J, et al. On the quest for the best freeze: predictors of late pulmonary vein reconnections after second-generation cryoballoon ablation. Circ Arrhythm Electrophysiol. 2015;8(6): 1359-1365. https://doi.org/10.1161/CIRCEP.115.002966.

28. Pott A, Kraft C, Stephan T, Petscher K, Rottbauer W, Dahme T. Time-to-isolation guided titration of freeze duration in 3rd generation short-tip cryoballoon pulmonary vein isolation - comparable clinical outcome and shorter procedure duration. Int J Cardiol. 2018; 255: 80-84. https://doi.org/10.1016/j.ijcard.2017.11.039.


Review

For citations:


Novikov P.S., Mironov N.Yu., Pahomenko P.K., Bezdelev A.V., Maykov E.B. Intraoperative esophageal temperature monitoring during cryoballoon ablation in patients with atrial fibrillation. Journal of Arrhythmology. 2025;32(4):45-52. https://doi.org/10.35336/VA-1557

Views: 67

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8641 (Print)
ISSN 2658-7327 (Online)