Preview

Journal of Arrhythmology

Advanced search

Electroanatomic bipolar mapping for detection of arrhythmogenic substrate in catheter ablation of atrial fibrillation

https://doi.org/10.35336/VA-2019-4-32-38

Abstract

The article presents data comparing the results of late gadolinium-enhanced magnetic-resonance imaging and bipolar mapping. The results of studies on the use of bipolar mapping data for substrate modification in catheter ablation of atrial fibrillation are presented, and perspectives for the development of the method are indicated.

About the Authors

A. V. Pavlov
Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Pavlov Alexandr

Tyumen Cardiology Research Center
111, Melnikaite str., Tyumen, 625026 



T. P. Gizatulina
Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation
Tyumen Cardiology Research Center
111, Melnikaite str., Tyumen, 625026


V. A. Kuznetsov
Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation
Tyumen Cardiology Research Center
111, Melnikaite str., Tyumen, 625026


References

1. Kottkamp H. Fibrotic atrial cardiomyopathy: a specific disease/syndrome supplying substrates for atrial fibrillation, atrial tachycardia, sinus node disease, AV node disease, and thromboembolic complications. J. Cardiovasc. Electrophysiol., 2012; 23(7): 797-799.

2. Gal P., Marrouche N.F. Magnetic resonance imaging of atrial fibrosis: redefining atrial fibrillation to a syndrome. Eur. Heart J., 2017; 38: 14-19.

3. Piorkowski C., Hindricks G., Schreiber D. et al. Electroanatomic reconstruction of the left atrium, pulmonary veins, and esophagus compared with the “true anatomy” on multislice computed tomography in patients undergoing catheter ablation of atrial fibrillation. Heart Rhythm, 2006; 3(3): 317-327.

4. Orshanskaya V.S., Kamenev A.V., Belyakova L.A. et al. Left atrial electroanatomic substrate as a predictor of atrial fibrillation recurrence after circular radiofrequency pulmonary veins isolation. Observational prospective study results. Russian Journal of Cardiology. 2017;(8):82-89 (In Russ.) https://doi.org/10.15829/15604071-2017-8-82-89

5. Allessie M., Ausma J., Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc. Res. 2002; 54(2): 230-246.

6. Yaksh A., Kik C., Knops P., Roos-Hesselink J.W. et al. Atrial fibrillation: to map or not to map? Neth. Heart. J., 2014; 22(6): 259-266.

7. Boldt A., Wetzel U., Lauschke J. et al. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart, 2004; 90: 400-405.

8. Zlochiver S., Munoz V., Vikstrom K.L. et al. Electrotonic myofibroblast-to-myocyte coupling increases propensity to reentrant arrhythmias in two-dimensional cardiac monolayers. Biophys. J., 2008; 95: 4469-4480.

9. Callans D., Ren J.F., Michele J. et al. Electroanatomic left ventricular mapping in the porcine model of healed anterior myocardial infarction. Correlation with intracardiac echocardiography and pathological analysis. Circulation, 1999; 100: 1744-1750.

10. Mahnkopf C., Badger T.J., Burgon N.S. et al. Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI: implications for disease progression and response to catheter ablation. Heart Rhythm, 2010; 7: 1475-1481.

11. Aparina O.P., Stukalova O.V., Parkhomenko D.V. et al. Characteristics of the left atrium miocardium structure in patients with atrial fibrillation and healthy volunteers according to the data of late gadolinium enhancement cardiac magnetic resonance imaging. Joutnal of arrhythmology, 2014; 77, p. 57-63(In Russ)

12. Sanders P., Morton J.B., Davidson N.C. et al. Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans. Circulation, 2003; 108: 1461-1468.

13. Sanders P., Morton J.B., Kistler P.M. et al. Electrophysiological and electroanatomic characterization of the atria in sinus node disease: evidence of diffuse atrial remodeling. Circulation, 2004; 109: 1514-1522.

14. Verma A., Wazni O. M., Marrouche N.F. et al. Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation: an independent predictor of procedural failure. J. Am. Coll. Cardiol., 2005; 45 (2): 285-92.

15. Marchlinski F.E., Callans D.J., Gottlieb C.D., Zado E. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation, 2000; 101: 1288-1296.

16. Stiles M.K., John B., Wong C.X., et al. Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: Characterizing the “second factor.” J. Am. Coll. Cardiol., 2009; 53: 1182-1191.

17. Kuklik P., Szumowski L., Zebrowski J.J., Walczak F. The reconstruction, from a set of points, and analysis of the interior surface of the heart chamber. Physiological Measurement, 2004; 25: 617-627.

18. Sapelnikov O.B., Shuvalova Y.A., Cherkashin et al. Voltage mapping as a method of evaluation of left atrium fibrosis. Medical Almanac, 2016; 4: 56-59 (In Russ)

19. Sim I., Bishop M., O’Neill M., Williams S.E. Left atrial voltage mapping: defining and targeting the atrial fibrillation substrate. J. Interv. Card. Electrophysiol., 2019; 56(3): 213-227.

20. Oakes R.S., Badger T.J., Kholmovski E.G. et al. Detection and Quantification of Left Atrial Structural Remodeling With Delayed-Enhancement Magnetic Resonance Imaging in Patients with Atrial Fibrillation. Circulation, 2009; 119: 1758-1767.

21. Kapa S., Desjardins B., Callans D.J. et al. Contact electroanatomic mapping derived voltage criteria for characterizing left atrial scar in patients undergoing ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol., 2014; 25: 1044-1052.

22. Akoum N., Daccarett M., McGann C. et al. Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: A DE-MRI guided approach. J. Cardiovasc. Electrophysiol., 2011; 22: 16-22.

23. Spragg D.D., Khurram I., Zimmerman S.L. et al. Initial experience with magnetic resonance imaging of atrial scar and co-registration with electroanatomic voltage mapping during atrial fibrillation: Success and limitations. Heart Rhythm, 2012; 9: 2003-2009.

24. McGann C., Akoum N., Patel A. et al. Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ. Arrhythm. Electrophysiol., 2014; 7: 23-30.

25. Marrouche N.F., Wilber D., Hindricks G. et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation. The DECAAF study. JAMA, 2014; 311(5): 498-506.

26. Anter E., Tschabrunn C.M., Josephson M.E. High-resolution mapping of scar-related atrial arrhythmias using smaller electrodes with closer interelectrode spacing. Circ. Arrhythm. Electrophysiol. 2015; 8: 537-545.

27. Mastrine L., Greenberg Y.J., Uang F. et al. Utilization of the PentaRay NAV catheter during atrial fibrillation ablations. EP Lab Digest, 2014; 14.

28. Tschabrunn C.M., Roujol S., Dorman N.C. et al. High-resolution mapping of ventricular scar: comparison between single and multi-electrode catheters. Circ. Arrhythm. Electrophysiol., 2016; 9: e003841.

29. Khurram I.M., Beinart R., Zipunnikov V. et al. Magnetic resonance image intensity ratio, a normalized measure to enable interpatient comparability of left atrial fibrosis. Heart Rhythm., 2014; 11: 85-92.

30. Zghaib T., Keramati A., Chrispin J. et al. Multimodal examination of atrial fibrillation substrate: correlation of left atrial bipolar voltage using multi-electrode fast automated mapping, point-by-point mapping, and magnetic resonance image intensity ratio. JACC Clin. Electrophysiol., 2018;4(1): 59-68.

31. Rolf S., Kircher S., Arya A. et al. Tailored atrial substrate modification based on low-voltage areas in catheter ablation of atrial fibrillation. Circ. Arrhythm. Electrophysiol., 2014; 7(5): 825-33.

32. Kottkamp H., Berg J., Bender R. et al. Box isolation of fibrotic areas (BIFA): A patient-tailored substrate modification approach for ablation of atrial fibrillation. J Cardiovasc Electrophysiol., 2016; 27(1):22-30.

33. Jadidi A. S., Lehrmann H., Keyl С. et al. Ablation of persistent atrial fibrillation targeting low-voltage areas with selective activation characteristics. Circ. Arrhythm. Electrophysiol., 2016; 9 (3): 9-11.

34. Cutler M. J., Johnson J., Abozguia K. et al. Impact of voltage mapping to guide whether to perform ablation of the posterior wall in patients with persistent atrial fibrillation. J. Cardiovasc. Electrophysiol., 2016; 27(1): 13-21.

35. Schreiber D., Rieger A., Moser F., Kottkamp H. Catheter ablation of atrial fibrillation with box isolation of fibrotic areas: Lessons on fibrosis distribution and extent, clinical characteristics, and their impact on long-term outcome. J. Cardiovasc. Electrophysiol., 2017; 28(9): 971-83.

36. Yamaguchi T., Tsuchiya T., Nakahara S., et al. Efficacy of left atrial voltage-based catheter ablation of persistent atrial fibrillation. J. Cardiovasc. Electrophysiol., 2016; 27(9): 1055-1063.

37. Yang G., Yang B., Wei Y. et al. Catheter ablation of nonparoxysmal atrial fibrillation using electrophysiologically guided substrate modification during sinus rhythm after pulmonary vein isolation. Circ. Arrhythm. Electrophysiol., 2016; 9(2):1-11.

38. Blandino, A., Bianchi, F., Grossi, S., et al. Left atrial substrate modification targeting low-voltage areas for catheter ablation of atrial fibrillation: A systematic review and meta-analysis. Pacing. Clin. Electrophysiol., 2017; 40(2): 199-212.

39. Kircher S., Arya A., Altmann D. et al. Individually tailored vs. standardized substrate modification during radiofrequency catheter ablation for atrial fibrillation: a randomized study. Europace, 2018; 20(11): 1766-1775.

40. Boyle P.M., Zahid S., Trayanova N.A. Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia. Europace, 2016;18 (suppl 4): iv136iv145.

41. Hansen B.J., Zhao J., Fedorov V.V. Fibrosis and Atrial Fibrillation: Computerized and Optical Mapping; A View into the Human Atria at Submillimeter Resolution. JACC Clin. Electrophysiol., 2017; 3(6): 531-546.

42. HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. By: Calkins H, Hindricks G, Cappato R. et al. Group Author(s): EHRA; AHA; Soc Latinoamer Estimulacion et al. EUROPACE, 2018; 20 (1): E1-E160.


Review

For citations:


Pavlov A.V., Gizatulina T.P., Kuznetsov V.A. Electroanatomic bipolar mapping for detection of arrhythmogenic substrate in catheter ablation of atrial fibrillation. Journal of Arrhythmology. 2019;26(4):32-38. (In Russ.) https://doi.org/10.35336/VA-2019-4-32-38

Views: 420


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8641 (Print)
ISSN 2658-7327 (Online)