ROLE OF MIR208A/B IN STRUCTURAL MYOCARDIAL REMODELING IN ATRIAL FIBRILLATION
Abstract
About the Authors
M. V. EremeevaRussian Federation
T. V. Sukhacheva
Russian Federation
V. A. Vaskovsky
Russian Federation
R. A. Serov
Russian Federation
A. Sh. Revishvili
Russian Federation
References
1. P. Kirchhof P, S. Benussi, D. Kotecha et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS: The Task Force for the management of atrial fibrillation of the European Society of Cardiology (ESC). Eur Heart J 2016. pii: ehw210.
2. Ю.В. Шубик. Антитромботическая терапия при фибрилляции предсердий. Вестник аритмологии, 2014, Том 75, с. 50-75.
3. Ю.В. Шубик. К вопросу об антикоагулянтной терапии при фибрилляции предсердий. Вестник аритмологии, 2014, Том 78, с. 71-72.
4. Ю.В. Шубик. Пероральные антикоагулянты при фибрилляции предсердий. Вестник аритмологии, 2016, Том 85, с. 66-68.
5. Д.С. Лебедев, Е.Н. Михайлов, Т.Н. Новикова и др. Соглашение экспертов Санкт-Петербургского отделения Всероссийского научного общества аритмологов по периоперационной антикоагулянтной терапии у пациентов с фибрилляцией и/или трепетанием предсердий, направленных на катетерное лечение нарушений ритма сердца или имплантацию антиаритмических устройств. Вестник аритмологии, 2016, Том 86, с. 72-77.
6. M. Alam, S.J. Bandeali, S.A. Shahzad, N. Lakkis Real-life global survey evaluating patients with atrial fibrillation (RE-ALISE-AF): results of an international observational registry. Expert Rev Cardiovasc Ther. 2012 Mar; 10(3): 283-91.
7. С.А. Бойцов, М.М. Лукьянов, С.С. Якушин и др. Регистр кардиоваскулярных заболеваний (РЕКВАЗА): диагностика, сочетанная сердечно-сосудистая патология, сопутствующие заболевания и лечение в условиях реальной амбулаторно-поликлинической практики. Кардиоваскулярная терапия и профилактика. 2014; 13(6): 44-50.
8. K. Gadsboll, L. Staerk, E.L. Fosbol et al. Increased use of oral anticoagulants in patients with atrial fibrillation: temporal trends from 2005 to 2015 in Denmark. European Heart Journal (2017) 00, 1-8 doi: 10.1093/eurheartj/ehw658.
9. Ревишвили А.Ш, Сергуладзе С.Ю., Кваша Б.И. с соавт. Ближайшие и отдаленные результаты хирургического лечения «изолированных» форм фибрилляции предсердий с помощью радиочастотной модификации операции «Лабиринт-V» // Вестник аритмологии. 2016; 83: 23-31.
10. Митрофанова Л.Б., Кудайбергенова А.Г., Антонова И.В. Фибрилляция предсердий, амилоидоз, миокардит и вирусная инфекция // Артериальная гипертензия. 2009; 15(2): 203-208.
11. Сухачева Т.В., Еремеева М.В, Ибрагимова А.Г. с соавт. Изолированный амилоидоз предсердий у пациентов с разными формами фибрилляции предсердий // Бюллетень экспериментальной биологии и медицины. 2015; 12: 821-7.
12. Adam O., Löhfelm B., Thum T. et al. Role of miR-21 in the pathogenesis of atrial fibrosis // Basic Res Cardiol. 2012; 107(5): 278.
13. Anné W., Willems R., Roskams T. et al. Matrix metal-loproteinases and atrial remodeling in patients with mitral valve disease and atrial fibrillation // Cardiovasc Res. 2005; 67(4): 655-66.
14. Ariyarajah V., Steiner I., Hajková P. et al. The association of atrial tachyarrhythmias with isolated atrial amyloid disease: preliminary observations in autopsied heart specimens // Cardiology. 2009; 113: 132-137.
15. Ausma J., Wijffels M., Thoné F. et al. Structural changes of atrial myocardium due to sustained atrial fibrillationin the goat // Circulation._1997; 96(9): 3157-63.
16. Baggish A.L., Park J., Min P.K. et al. Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise // J Appl Physiol (1985). 2014 Mar 1;116(5):522-31. doi: 10.1152/japplphysiol.01141.2013.
17. Callis T.E., Pandya K., Seok H.Y. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice // J Clin Invest. 2009; 119(9): 2772-86.
18. Cooley N., Cowley M.J., Lin R.C. et al. Influence of atrial fibrillation on microRNA expression profiles in left and right atria from patients with valvular heart disease // Physiol Genomics. 2012; 44(3): 211-9.
19. Corradi D., Callegari S., Benussi S., Maestri R. et al. Myocyte changes and their left atrial distribution in patients with chronic atrial fibrillation related to mitral valve disease // Hum. Pathol._2005; 36(10): 1080-9.
20. Corradi D., Callegari S., Maestri R. et al. Differential structural remodeling of the left-atrial posterior wall in patients affected by mitral regurgitation with or without persistentatrial fibrillation: a morphological and molecular study // J. Cardiovasc. Electrophysiol._2012; 23(3): 271-9.
21. Driesen R.B., Verheyen F.K., Debie W. et al. Re-expression of alpha skeletal actin as a marker for dedifferentiation in cardiac pathologies // J. Cell. Mol. Med. 2009; 13(5): 896-908.
22. Fidzianska А., Walczak E., Bekta P., Chojnowska L. Are cardiomyocytes able to generate pre-amyloid peptides? // Folia. Neuropathol. 2011; 49 (1): 64-70.
23. Frustaci А., Chimenti C., Bellocci F. et al. Histological substrate of atrial biopsies in patients with lone atrial fibrillation // Circulation. 1997; 96(4): 1180-4.
24. Gidlöf O., Smith J.G., Miyazu K. et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction // BMC Cardiovasc Disord. 2013; 13: 12.
25. Goettsch C., Hutcheson J.D., Aikawa E. MicroRNA in cardiovascular calcification: focus on targets and extracellular vesicle delivery mechanisms // Circ Res. 2013; 112(7): 1073-84.
26. Johansson B., Westermark P. The relation of atrial natriuretic factor to isolated atrial amyloid // Exp. Mol. Pathol. 1990; 52(3): 266-78.
27. Kawamura S., Takahashi M., Ishihara T., Uchino F. Incidence and distribution of isolated atrial amyloid: histologic and immunohistochemical studies of 100 aging hearts // Pathol Int. 1995; 45(5): 335-42.
28. Kaye G.C., Butler M.G., d’Ardenne A.J. et al. Isolated atrial amyloid contains atrial natriuretic peptide: a report of six cases // Br. Heart J._1986; 56(4): 317-20.
29. Leone O., Boriani G., Chiappini B. et al. Amyloid deposition as a cause of atrial remodeling in persistent valvular atrial fibrillation // European Heart Journal. 2004; 25: 1237-1241.
30. Li C., Chen X., Huang J et al. Clinical impact of circulating miR-26a, miR-191, and miR-208b in plasma of patients with acute myocardial infarction // Eur J Med Res. 2015; 20: 58.
31. Li H., Li S., Yu B., Liu S. Expression of miR-133 and miR-30 in chronic atrial fibrillation in cannines // Mol Med Rep 2012. V 5. P. 1457-1460.
32. Lippi G., Mattiuzzi C., Cervellin G. MicroRNAs for diagnosing myocardial infarction. Advantages and limitations // Int J Cardiol. 2013; 168(5): 4849-50.
33. Liu Z., Zhou C., Liu Y. et al. The expression levels of plasma micoRNAs in atrial fibrillation patients // PLoS ONE. 2012. 7(9): e44906.
34. Looi L.M. Isolated atrial amyloidosis: a clinicopathologic study indicating increased prevalence in chronic heart disease // Hum. Pathol. 1993; 24(6): 602-7.
35. Mandache E., Gherghiceanu M., Macarie C. et al. Telo-cytes in human isolated atrial amyloidosis: ultrastructural remodelling // J Cell Mol Med. 2010; 14(12): 2739-2747.
36. Montgomery R.L., Hullinger T.G., Semus H.M. et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure // Circulation. 2011; 124(14):1537-47.
37. Nishi H., Sakaguchi T., Miyagawa S. et al. Impact of microRNA expression in human atrial tissue in patients with atrial fibrillation undergoing cardiac surgery // PLoS One. 2013; 8(9): e73397.
38. Oliveira-Carvalho V., da Silva M.M., Guimaräes G.V. et al. MicroRNAs: new players in heart failure // Mol Biol Rep. 2013; 40(3): 2663-70.
39. Platonov P., Mitrofanova L.B., Orshanskaya V., Ho S.Y. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age // J Am Coll Cardiol. 2011; 58(21): 2225-32.
40. Röcken C., Peters B., Juenemann G., et al. Atrial amyloidosis: an arrhythmogenic substrate for persistent atrial fibrillation / Circulation. 2002; 106(16): 2091-7.
41. Rücker-Martin C., Pecker F., Godreau D., Hatem S.N. Dedifferentiation of atrial myocytes during atrial fibrillation: role of fibroblast proliferation in vitro // Cardiovasc. Res. 2002; 55(1): 38-52.
42. Saito T., Tamura K., Uchida D. et al. Histopathologica features of the resected left atrial appendage as predictors of recurrence after surgery for atrial fibrillation in valvular heart disease // Circ J. 2007; 71(1): 70-8.
43. Santulli G., Iaccarino G., De Luca N. et al. Atrial fibrillation and microRNAs // Front Physiol. 2014; 5: 15: 1-7.
44. Schotten U., Ausma J., Stellbrink C. et al. Cellular mechanisms of depressed atrial contractility in patients with chronic atrial fibrillation // Circulation. 2001; 103(5): 691-8.
45. Sharma S., Sharma G., Hote M. et al. Light and electron microscopic features of surgically excised left atrial appendage in rheumatic heart disease patients with atrial fibrillation and sinus rhythm // Cardiovasc Pathol. 2014; 23(6): 319-26.
46. Slagsvold K.H., Johnsen A.B., Rognmo O. et al. Mitochondrial respiration and microRNA expression in right and left atrium of patients with atrial fibrillation // Physiol Genomics. 2014; 46(14): 505-11.
47. Smorodinova N., Lantova L., Blaha M. et al. Bioptic study of left and right atrial interstitium in cardiac patients with and without atrial fibrillation: interatrial but not rhythm-based differences // PLoS One. 2015; 10(6): e0129124.
48. Takahashi M., Hoshii Y., Kawano H. et al. Ultrastructural evidence for the formation of amyloid fibrils within cardiomyocytes in isolated atrial amyloid // Amyloid. 1998; 5(1): 35-42.
49. Van Brakel T.J., van der Krieken T., Westra S.W. et al. Fibrosis and electrophysiological characteristics of the atrial appendage in patients with atrial fibrillation and structural heart disease // J Interv Card Electrophysiol. 2013; 38: 85-93.
50. Van Den Berg M.P., Crijns H. J.G.M., Van Veldhuisen D.J. et al. Atrial natriuretic peptide in patients with heart failure and chronic atrial fibrillation: Role of duration of atrial fibrillation // Am Heart J. 1998; 135: 242-4.
51. van Rooij E., Sutherland L.B., Qi X. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA // Science. 2007; 316(5824): 575-9.
52. Wang B-W., Wu G.-Jh., Cheng W.-P., Shyu K.-G. Mi-croRNA-208a increases myocardial fibrosis via endoglobin in volume overloading heart // PLoS One. 2014; 9(1): e84188.
53. Wang E., Nie Y., Zhao Q. et al. Circulating miRNAs reflect early myocardial injury and recovery after heart transplantation // J Cardiothorac Surg. 2013; 8: 165.
54. Wang G.K., Zhu J.Q., Zhang J.T. et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans // Eur Heart J. 2010; 31(6): 659-66.
55. Xu J., Cui G., Esmailian F. et al. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation // Circulation. 2004; 109(3): 363-8.
Review
For citations:
Eremeeva M.V., Sukhacheva T.V., Vaskovsky V.A., Serov R.A., Revishvili A.Sh. ROLE OF MIR208A/B IN STRUCTURAL MYOCARDIAL REMODELING IN ATRIAL FIBRILLATION. Journal of Arrhythmology. 2017;(87):7-15. (In Russ.)