ЭЛЕКТРОФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПРЕКРАЩЕНИЯ ФИБРИЛЛЯЦИИ ПРЕДСЕРДИЙ: НОВОЕ ПОНИМАНИЕ, ПОЛУЧЕННОЕ НА ОСНОВЕ НЕИНВАЗИВНОГО ФАЗОВОГО КАРТИРОВАНИЯ
Аннотация
Об авторах
А. Ш. РевишвилиРоссия
Е. А. Фетисова
Россия
В. В. Калинин
Россия
А. В. Калинин
Россия
М. К. Чайковская
Россия
С. А. Миронович
Россия
В. В. Купцов
Россия
Список литературы
1. Heeringa J., van der Kuip D.A., Hofman A., et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study // Eur Heart J 2006; 27: 949-953.
2. Chugh S.S., Havmoeller R., Narayanan K., et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 2014; 129: 837-847.
3. Haissaguerre M., Jaïs P., Shah D.C., et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 1998; 339: 659-666.
4. Gray R., Pertsov A.M., Jalife J. Spatial and temporal organization during cardiac fibrillation. Nature 1998; 392: 75-78.
5. Umapathy K., Nair K., Masse S., et al. Phase mapping of cardiac fibrillation. Circ Arrhythm Electrophysiol. 2010; (3): 105-114.
6. Clayton R.H., Nash M.P. Analysis of cardiac fibrillation using phase mapping. Card Electrophysiol Clin 2015; 7: 49-58.
7. Rogers J.M. Combined phase singularity and wavefront analysis for optical maps of ventricular fibrillation. IEEE Trans Biomed Eng 2004; 92: 56-65.
8. Nash M.P., Mourad A., Clayton R.H., et al. Evidence for multiple mechanisms in human ventricular fibrillation. Circulation 2006; 114: 536-542
9. Masse S., Downar E., Chauhan V., Sevaptsidis E., Nanthakumar K. Ventricular fibrillation in myopathic human hearts: mechanistic insights from in vivo global endocardial and epicardial mapping. Am J Physiol Heart Circ Physiol 2007; 292: H2589-2597.
10. ten Tusscher K.H., Mourad A., Nash M.P., et al. Organization of ventricular fibrillation in the human heart: experiments and models. Exp Physiol 2009; 94: 553-562.
11. Narayan S.M., Bhargava V. Temporal and spatial phase analyses of the electrocardiogram stratify intra-atrial and intra-ventricular organization. IEEE Trans Biomed Eng 2004; 51: 1749-1764.
12. Narayan S.M., Krummen D.E., Rappel W.J. Clinical mapping approach to diagnose electrical rotors and focal impulse sources for human atrial fibrillation. J Cardiovasc Electrophysiol 2012; 23: 447-454.
13. Narayan S.M., Krummen D.E., Clopton P., et al. Direct or coincidental elimination of stable rotors or focal sources may explain successful atrial fibrillation ablation: on-treatment analysis of the CONFIRM trial (Conventional ablation for AF with or without focal impulse and rotor modulation). J Am Coll Cardiol 2013; 62: 138-147.
14. Ревишвили А.Ш., Калинин В.В., Сопов О.В., Симонян Г.Ю., Ляджина О.С., Фетисова Е.А. Первый опыт хирургического лечения нарушений ритма сердца при помощи неинвазивной системы диагностики поверхностного картирования «Амикард-01». Анналы аритмологии 2011; 8: 47-52.
15. Revishvili A.S., Wissner E., Lebedev D.S., et al. Validation of the mapping accuracy of a novel non-invasive epicardial and endocardial electrophysiology system. Europace 2015; 17: 1282-1288.
16. Wissner E., Revishvili A., Metzner A., et al. Noninvasive epicardial and endocardial mapping of premature ventricular contractions. Europace 2016; doi: 10.1093/europace/euw103.
17. Haissaguerre M., Hocini M., Shah A.J., et al. Noninvasive panoramic mapping of human atrial fibrillation mechanisms: a feasibility report. J Cardiovasc Electrophysiol 2013; 24: 711-717.
18. Haissaguerre M., Hocini M., Denis A., et al. Driver domains in persistent atrial fibrillation. Circulation 2014; 130: 530-538.
19. Lim H.S., Zellerhoff S., Derval N., et al. Noninvasive Mapping to Guide Atrial Fibrillation Ablation. Card Electrophysiol Clin 2015; 7: 89-98.
20. Witkowski F.X., Leon L.J., Penkoske P.A., et al. Spatiotemporal evolution of ventricular fibrillation. Nature 1998; 392: 78-82.
21. Gray R.A., Pertsov A.M., Jalife J. Spatial and temporal organization during cardiac fibrillation. Nature 1998; 392: 75-78.
22. Mandapati R., Skanes A., Chen J., et al. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation 2000; 101: 194-199.
23. Berenfeld O., Yamazaki M., Filgueiras-Rama D., Kalifa J. Surface and intramural reentrant patterns during atrial fibrillation in the sheep. Methods Inf Med 2014; 53: 314319.
24. Hansen B.J., Zhao J., Csepe T.A., et al. Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur Heart J 2015; 36: 2390-2401.
25. Allessie M.A., Bonke F.I., Schopman F.J. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res. Jul 1977; 41: 9-18.
26. Moe G. On the multiple wavelet hypothesis of atrial fibrillation. Arch Int Pharmacodyn Ther. 1962; 140: 183188.
27. Allessie M.A., Lammers W.J.E.P, Bonke F.I.M, Hollen, J. Experimental evaluation of Moe’s multiple wavelet hypothesis of atrial fibrillation. In: Zipes, DP.; Jalife, J., editors. Cardiac Electrophysiology and Arrhythmias. Grune & Stratton; Orlando: 1985: 265-75.
28. Krinsky V.I. Mathematical models of cardiac arrhythmias (spiral waves). Pharmacol. Ther. 1978; 3: 539-555.
29. Winfree AT. When time breaks down. The three-dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton (NJ): Princeton University Press; 1987: 339.
30. Sandeep V. Pandit A.V., Jalife J. Rotors and the Dynamics of Cardiac Fibrillation. Circ Res. 2013; 112: 849-862.
31. Yamazaki M, Honjo H, Nakagawa H, et al. Mechanisms of destabilization and early termination of spiral wave reentry in the ventricle by a class III antiarrhythmic agent, nifekalant. Am J Physiol Heart Circ Physiol 2007; 292: H539-548.
32. Bingen B.O., Engels M.C., Schalij M.J., et al. Light-induced termination of spiral wave arrhythmias by optoge-netic engineering of atrial cardiomyocytes. Cardiovascular Research 2014; 104: 194-205.
33. Comtois P., Sakabe M., Vigmond E.J., et al. Mechanisms of atrial fibrillation termination by rapidly unbinding sodium channel blockers: Insights from mathematical models and experimental correlates. Am J Physiol Heart Circ Physiol. 2008; 295: H1489-504.
34. Harada M., Honjo H., Yamazaki M., et al. Moderate hypothermia increases the chance of spiral wave collision in favor of self-termination of ventricular tachycardia/fibrillation. Am J Physiol Heart Circ Physiol 2008; 294: H1896-905.
35. Bellandi F, Dabizzi RP, Cantini F. Intravenous propafenone: efficacy and safety in the conversion to sinus rhythm of recent onset atrial fibrillation - a single-blind placebocontrolled study. Cardiovasc. Drugs Ther 1996; 10: 153157.
36. Миронов Н.Ю., Голицын С.П., Соколов С.Ф., и др. Электрофизиологические и антиаритмические эффекты нового отечественного препарата III класса ниферидила. Вестник аритмологии. 2012; 70: 5-13.
Рецензия
Для цитирования:
Ревишвили А.Ш., Фетисова Е.А., Калинин В.В., Калинин А.В., Чайковская М.К., Миронович С.А., Купцов В.В. ЭЛЕКТРОФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПРЕКРАЩЕНИЯ ФИБРИЛЛЯЦИИ ПРЕДСЕРДИЙ: НОВОЕ ПОНИМАНИЕ, ПОЛУЧЕННОЕ НА ОСНОВЕ НЕИНВАЗИВНОГО ФАЗОВОГО КАРТИРОВАНИЯ. Вестник аритмологии. 2017;(88):5-12.
For citation:
Revishvili A.Sh., Fetisova E.A., Kalinin V.V., Kalinin A.V., Chaikovskaya M.K., Mironovich S.A., Kuptsov V.V. ELECTROPHYSIOLOGICAL MECHANISMS UNDERLYING TERMINATION OF ATRIAL FIBRILLATION: INSIGHTS GAINED FROM NON-INVASIVE PHASE MAPPING. Journal of Arrhythmology. 2017;(88):5-12. (In Russ.)