Preview

Journal of Arrhythmology

Advanced search

NONINVASIVE MYOCARDIUM ACTIVATION MAPPING BASED ON NUMERICAL RECONSTRUCTION OF BIPOLAR ELECTROGRAMS

Abstract

Presently, methods of noninvasive imaging of electrophysiological activity in the heart - ECGI (Electrocardiographic Imaging) - are being developed, based on the solution of the inverse ECG problem, i.e. estimation of electrical potential on the epicardial heart surface on hand of body surface mapping (BSM) that samples electrical activity with high spatial resolution over an extensive thoracic surface. Myocardium activation sequence - activation mapping - is one of the main goals of the heart Electrophysiological (EP) study. To construct activation maps on hand of a set of unipolar electrograms received by solving the inverse ECG problem, the approach is mainly used, whereby the excitation wave arrival time to a definite myocardium location is estimated by the so called time of internal deflection (TID) of the unipolar Electrogram (EG). But the method adopted from the praxis of catheter EP study does not always give satisfactory results. Therefore, search for more effective activation mapping method is a topical task of the noninvasive Electrocardiography. We present a method of activation mapping comprising two stages: reconstruction of the vector field of myocardium excitation direction and subsequent construction of isochrones maps. In this method, the myocardium excitation direction is determined by analysing the bipolar Electrograms, reconstructed on the basis of BSM data. The direction is chosen in accordance with the modelling results as the axis direction of the bipolar lead with the maximal signal amplitude and symmetry. To verify the method of noninvasive activation mapping, 56 patients were investigated during years 2010-2011 at Bakoulev Scientific Centre for Cardiovascular Surgery of Russian Academy of Medical Sciences, Department for Tachyarrhythmia Surgical Treatment. The patients were characterized by: WPW syndrome - 18, atrial ectopic extrasystoles - 12, ventricular ectopic extrasystoles - 26. All patients underwent noninvasive activation mapping, invasive EP study afterwards, also with the aid of CARTO system, and catheter high frequency ablation (HFA). Noninvasive activation mapping has been performed with the aid of the “Amycard” diagnostic system. Additionally to options described elsewhere, the system enables for simultaneous epicardial and endocardial mapping. In all cases the noninvasive isochrones maps correspond to awaited course of myocardium excitation and satisfactory well coincide with CARTO endocardial isochrones maps. Noninvasive isochrones maps defined by reconstruction of the myocardium excitation directions have high spatial resolution: regions of early activation on those maps well coincide with localization of ectopic foci and zones of pre-excitation. Accordingly, the regions of early activation are much narrower than the appropriate zones on maps defined by internal deflection time of unipolar electrograms.

About the Authors

A. S. Revishvili
Научный центр сердечнососудистой хирургии имени А.Н.Бакулева РАМН
Russian Federation


V. V. Kalinin
Научный центр сердечнососудистой хирургии имени А.Н.Бакулева РАМН
Russian Federation


A. V. Kalinin
Московский государственный университет имени М.В. Ломоносова
Russian Federation


I. S. Khassanov
Университет Эрланген-Нюрнберг имени Фридриха-Александра, Эрланген, Германия
Russian Federation


J. -P. Stroebel
Efforma Concepts GmbH & Co. KG, Нюрнберг, Германия
Russian Federation


B. .. Hensel
Университет Эрланген-Нюрнберг имени Фридриха-Александра, Эрланген, Германия
Russian Federation


References

1. Ramanathan C, Ghanem RN, Jia P te al. Electrocardiographic imaging (ECGI): a noninvasive imaging modality for cardiac electrophysiology and arrhythmia // Nature Medicine 2004; 10: 422-428.

2. Rudy Y, Ramanathan C, Ghanem RN, Jia P. System and methods for noninvasive electrocardiographic imaging (ECGI) using generalized minimum residuals (GMRes). USA Patent No. 7016719.

3. MacLeod RS, Brooks DH. Recent progress in inverse problems in electrocardiology // IEEE Engineering in Medicine and Biology Magazine 1998; 17 (1): 73-83.

4. Rudy Y. Noninvasive imaging of cardiac electrophysiology and arrhythmia // Annals N.Y. Academy of Sciences 2010; 1188: 214-221.

5. Lindsay BD, Dubois R, Shah A et al. Novel directional activation map using local propagation between adjacent electrograms // Heart Rhythm 2011; 8 (5, May supplement): 312.

6. Аносов О.Л., Хасанов И.Ш., Хензель Б. и др. Метод мониторинга изменений паттерна возбуждения в миокарде in vivo // Вестник аритмологии 2007; № 48: с. 28-34.

7. Хасанов И.Ш., Хензель Б. Форма биполярных сигналов волны возбуждения в квази-трехмерной модели миокарда. Материалы III Всероссийского съезда аритмологов, Москва, 8-10 июня 2009 года // Анналы аритмологии 2009; № 2: с. 9.

8. Nygren A, Fiset C, Firek L et al. Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization // Circulation Research 1998; 82: 63-81.

9. Денисов А.М., Захаров Е.В., Калинин А.В., Калинин В.В. Применение метода регуляризации Тихонова для решения обратной задачи электрокардиографии // Вестник МГУ Серия 15. Вычислительная математика и кибернетика 2008; № 2: с. 5-10.

10. Денисов А.М., Захаров Е.В., Калинин А.В., Кали нин В.В. Численные методы решения некоторых обратных задач электрофизиологии сердца // Дифференциальные уравнения 2009; 45 (7): с. 1014-1022.

11. Ghosh S, Rudy Y. Application of L1-norm regularization to epicardial potential solution of the inverse electrocardiography problem // Annals of Biomedical Engineering 2009; 37: 902-912.

12. Kalinin AV Iterative algorithm for the inverse problem of electrocardiography in a medium with piecewise-constant electrical conductivity // Computational Mathematics and Modeling 2011; 22: 30-34.

13. Ramanathan C, Jia P, Ghanem RN et al. Noninvasive electrocardiographic imaging (ECGI): application of the generalized minimal residual (GMRes) method // Annals of Biomedical Engineering 2003; 31: 981-994.

14. Gray LJ, Phan A-V, Kaplan T. Boundary integral evaluation of surface derivatives // SIAM J. Sci. Comput 2004; 26: 294-312.

15. Sutradhar A, Paulino GH, Gray LJ. Symmetric Galerkin Boundary Element Method. City: Publishing House 2008.

16. Zakharov EV, Kalinin AV Algorithms and numerical analysis of dc fields in a piecewise-homogeneous medium by the boundary integral equation method // Computational Mathematics and Modeling 2009; 20: 247-257.

17. Бокерия Л.А., Ревишвили А.Ш., Калинин А.В. и др. Программно-аппаратный комплекс для неинвазивного электрофизиологического исследования сердца на основе решения обратной задачи электрокардиографии // Медицинская техника 2008; №6: с. 1-7.

18. Бокерия Л.А., Ревишвили А.Ш., Ляджина О.С. и др. Неинвазивное эндокардиальное картирование желудочков сердца на основе решения обратной задачи электрокардиографии // Вестник аритмологии 2009; №57: с. 24-28.


Review

For citations:


Revishvili A.S., Kalinin V.V., Kalinin A.V., Khassanov I.S., Stroebel J.-., Hensel B... NONINVASIVE MYOCARDIUM ACTIVATION MAPPING BASED ON NUMERICAL RECONSTRUCTION OF BIPOLAR ELECTROGRAMS. Journal of Arrhythmology. 2013;(74):20-28. (In Russ.)

Views: 277


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8641 (Print)
ISSN 2658-7327 (Online)