Preview

Journal of Arrhythmology

Advanced search

RESPONSE TO CARDIAC RESYNCHRONIZATION THERAPY DEPENDING ON LOCATION OF CARDIAC DYSSYNCHRONY ZONES AND POSITION OF VENTRICULAR ELECTRODES

Abstract

To reveal predictors of response to cardiac resynchronization therapy (CRT) by comparing zones of maximal intraventricular dyssynchrony (IVD) and location of ventricular electrodes (VE), the retrospective study included 40 patients, including 26 men (65%) and 14 women (35%), with the sinus rhythm and implanted CRT system according to the commonly accepted indications. The patients aged 60.91±11.43 years; ischemic cardiomyopathy was documented in 48% of cases according to the data of coronary angiography and/or the documented evidence of myocardial infarction. Patients with significant valvular disease (more than moderate valvular regurgitation or any valvular stenosis) as well as more than mild pulmonary hypertension were excluded from the study. The study subjects were distributed into two groups. Group I (n=20) included subjects with a pronounced response to CRT. The CRT response criteria were as follows: decrease in the left ventricular (LV) end-systolic volume (ESV) by at least 15%, a relative increase in the LV ejection fraction (EF) by at least 10%, improvement of the chronic heart failure (CHF) by at least 1 functional class. Group II (n=20) included patients with an inadequate response to CRT (no positive changes in size, dimensions, and EF LV). While implanting the CRT system, the right atrial (RA) electrode was positioned at the right auricle; the right ventricular (RV) electrode was positioned at basal or medial parts of the inter-ventricular septum (IVS) or the RV apex. The LV electrode was implanted into any branch of the coronary sinus. The follow-up period lasted for 12.0±1.7 months. Coincidence of the zone of maximal IVD with the site of the LV electrode implantation was assessed with the aid of the vector ECG analysis in 12 standard leads during the isolated LV pacing using 12 conventional segments, as follows: 3 posterior segments, 3 posterolateral ones, 3 lateral ones, and 3 anterolateral ones on the basal, medial, and apical levels. The RV electrode location was assessed during the isolated RV pacing using 3 following conventional segments: basal part of IVS., medial part of IVS., and apex of RV. After 12 months of follow-up, considerable difference between the study groups in the end diameters, volume, and LV EF was shown (p<0.001). LV EF was 44.9±5.9% in Group I, 26.9±6.4% in Group II. A better functional class of CHF was found in Group I than in Group II (15 and 6 of patients with CHF II (NYHA), respectively, p=0.043). No IVD after 12 months of follow-up was observed in 19 patients of Group I and 16 patients of Group II, p=0.493. It should also be noted that in patients with IVD at baseline (13 subjects of Group I and 12 subjects of Group II), in 12 months IVD was detected in 1 patient of Group I and 4 patients of Group II. Thus, IVD recovered in 91.7% of cases in Group I and in 66.7% of cases in Group II, p=0.068. According to the ECG data, coincidence of the zone of maximal IVD with the site of the LV electrode implantation was more frequent in Group I (13 patients) than in Group II (6 patients), p=0.028. Thus, CRT is a complex process which includes the correct selection of patients, the device implantation itself, as well as subsequent long-term follow-up with the CRT parameter correction and medical therapy. IVD at baseline, coincidence of the zone of maximal IVD with the site of the LV electrode implantation and the distance between ventricular electrodes can be considered predictors of a better outcome in CRT to be taken into consideration during implantation. Coincidence of the zone of maximal IVD with the site of the LV electrode implantation in associated with a substantial long-term improvement in the hemodynamics of subjects with CRT.

About the Authors

T. A. Lyubimtseva
ФГБУ «Федеральный медицинский исследовательский центр имени В.А. Алмазова», Санкт-Петербург
Russian Federation


V. K. Lebedeva
ФГБУ «Федеральный медицинский исследовательский центр имени В.А. Алмазова», Санкт-Петербург
Russian Federation


M. A. Trukshina
ФГБУ «Федеральный медицинский исследовательский центр имени В.А. Алмазова», Санкт-Петербург
Russian Federation


E. A. Lyasnikova
ФГБУ «Федеральный медицинский исследовательский центр имени В.А. Алмазова», Санкт-Петербург
Russian Federation


D. S. Lebedev
ФГБУ «Федеральный медицинский исследовательский центр имени В.А. Алмазова», Санкт-Петербург
Russian Federation


References

1. Linde C., Leclercq C., Rex S., et al. Long-term benefits of biventricular pacing in congestive heart failure: results from the MUltisite STimulation in cardiomyopathy (MUSTIC) study // J Am Coll of Cardiol 2002; 40: 111-118.

2. Chung E.S., Leon A.R., Tavazzi L., et al. Results of the Predictors of Response to CRT (PROSPECT) trial // Circulation. 2008; 117(20): 2608-2616.

3. Moss A.J., Hall W.J., Cannom D.S., et al. Cardiac-resynchronization therapy for the prevention of heart-failure events // N Engl J Med 2009; 361: 1329-1338.

4. Abraham W.T., Fisher W.G., Smith A.L., et al. Cardiac resynchronization in chronic heart failure // N Engl J Med. 2002; 346(24): 1845-1853.

5. Ypenburg C., Van De Veire N., Westenberg J.J., et al. Non-invasive imaging in cardiac resynchronization therapy -Part 2: Follow-up and optimization of settings // Pacing Clin Electrophysiol. 2008; 31(12): 1628-1639.

6. Bleeker G.B., Schalij M.J., Van Der Wall E.E., Bax J.J. Postero-lateral scar tissue resulting in non-response to cardiac resynchronization therapy // J Cardiovasc Electrophysiol. 2006; 17(8): 899-901.

7. Wilton S.B., Shibata M.A., Sondergaard R., et al. Relationship between left ventricular lead position using a simple radiographic classification scheme and long-term outcome with resynchronization therapy // J Interv Card Electrophysiol. 2008; 23(3): 219-227.

8. Merchant F.M., Heist E.K., McCarty D., et al. Impact of segmental left ventricle lead position on cardiac resynchronization therapy outcomes // Heart Rhythm. 2010; 7(5): 639-644.

9. Fung J.W., Yu C.M., Yip G., et al. // Heart. 2004; 90(1): 17-19

10. Leclercq C., Faris O., Tunin R., et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block // Circulation. 2002; 106(14): 1760-1763.

11. Blendea D., Singh J.P. Lead positioning strategies to enhance response to cardiac resynchronization therapy // Heart Fail Rev. 2011; 16: 291-303.

12. Singh J.P., Heist E.K., Ruskin J.N., Harthorne J.W. “Dialing-in” cardiac resynchronization therapy: overcoming constraints of the coronary venous anatomy // J Interv Card Electrophysiol. 2006; 17(1): 51-58.

13. Heist E.K., Fan D., Mela T. et al. Radiographic left ventricular-right ventricular interlead distance predicts the acute hemodynamic response to cardiac resynchronization therapy // Am J Cardiol. 2005; 96(5): 685-690.

14. Singh J.P., Houser S., Heist E.K., Ruskin J.N. The coronary venous anatomy: a segmental approach to aid cardiac resynchronization therapy // J Am Coll Cardiol. 2005; 46(1): 68-74.

15. Singh J.P. A sub-study of MADIT-CRT on left ventricular lead position // Heart Rhythm Society Scientific Sessions, 2010.

16. Ypenburg C., van Bommel R.J., Delgado V., et al. Optimal left ventricular lead position predicts reverse remodeling and survival after cardiac resynchronization therapy // J Am Coll Cardiol. 2008; 52(17): 1402-1409

17. Stankovic I., Aarones M., Smith H.J., et al. Dynamic relationship of left-ventricular dyssynchrony and contractile reserve in patients undergoing cardiac resynchronization therapy // Eur Heart J. 2014; 35(1): 48-55.

18. Foley P.W., Leyva F., Frenneaux M.P. What is treatment success in cardiac resynchronization therapy? // Europace. 2009; 11 Suppl 5: v58-65.

19. Bleeker G.B., Bax J.J., Fung J.W., et al. Clinical versus echocardiographic parameters to assess response to cardiac resynchronization therapy // Am J Cardiol. 2006; 97(2): 260-263.

20. Gorcsan J., Abraham T. et al. Echocardiograrhy for Cardiac Resynchronization Therapy: Recommendations for performance and reporting - a Report from the American Society of Echocardiography Dyssynchrony Writing Group. ASE Expert Consensus Statement // J Am Soc Echocardiogr. 2008; 21(3): 191-213.

21. Wellens H.J.J., Conover M. The ECG in Emergency Decision Making. 2nd Edition. Saunders. Elsevier. 2006. - 284 p.

22. Barold S.S., Stroobandt R.X., Sinnaeve A.F. Cardiac Pacemakers and Resynchronization Step by Step: An Illustrated Guide. 2nd Edition. Wiley-Blackwell. Oxford. 2010. - 452 p.

23. Rahmouni H.W., Kirkpatrick J.N., St John Sutton M.G. Effects of cardiac resynchronization therapy on ventricular remodeling // Curr Heart Fail Rep. 2008; 5(1): 25-30.

24. Khan F.Z., Virdee M.S., Palmer C.R., et al. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial // J Am Coll Cardiol. 2012; 59(17): 1509-1518.

25. Kirk J.A., Kass D.A. Electromechanical dyssynchrony and resynchronization of the failing heart // Circ Res. 201; 113(6): 765-776.

26. Döring M., Braunschweig F., Eitel C., et al. Individually tailored left ventricular lead placement: lessons from multimodality integration between three-dimensional echocardiography and coronary sinus angiogram // Europace. 2013; 15(5): 718-727.

27. Duckett S.G., Ginks M., Shetty A.K., et al. Invasive acute hemodynamic response to guide left ventricular lead implantation predicts chronic remodeling in patients undergoing cardiac resynchronization therapy // J Am Coll Cardiol. 2011.


Review

For citations:


Lyubimtseva T.A., Lebedeva V.K., Trukshina M.A., Lyasnikova E.A., Lebedev D.S. RESPONSE TO CARDIAC RESYNCHRONIZATION THERAPY DEPENDING ON LOCATION OF CARDIAC DYSSYNCHRONY ZONES AND POSITION OF VENTRICULAR ELECTRODES. Journal of Arrhythmology. 2014;(78):12-18. (In Russ.)

Views: 123


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8641 (Print)
ISSN 2658-7327 (Online)