The improvement of cardiac multispiral computed tomography protocol for planning interventional arrhythmia management
https://doi.org/10.35336/VA-2021-E-25-31
Аннотация
Purpose. The study aimed at the comparison of computed tomography (СT) contrast enhancement (CE) protocols for optimal visualization of cardiac chambers, evaluation of their impact on results of non-invasive superficial cardiac mapping.
Methods. The study included 93 patients with heart rhythm disorders in whom catheter ablation of arrhythmia was planned. Noninvasive cardiac mapping for arrhythmia localization was performed and included multichannel ECG-registration and CT with intravenous СE (1st group - monophasic (50 patients), 2nd group - split-bolus (18 patients), 3rd group - with pre-bolus (25 patients). Qualitative and quantitative (measurement of mean blood attenuation in four chambers, calculation of ventricular-myocardial [VM] contrast-to-noise ratio VM-LV и VM-RV for the left ventricle [LV] and right ventricle [RV], respectively) parameters were compared between the groups. Fusion of ECG and CT data was carried out a semi-automatic mode with a non-invasive imaging complex.
Results. Regardless of CE technique, sufficient and homogeneous contrast attenuation was obtained for the left atrium (LA) and LV (mean blood attenuation in LA more than 278 HU, LV 250 HU, VM-LV 0,582). In most cases, the enhancement of the right heart was insufficient with the monophasic protocol; the average CT density was lower than 200 HU, VM-RV 0,256. The split-bolus protocol improved visualization of the right atrium (RA) and RV (blood density in RA 258HU, RV 227HU, VMRV 0,541); however, there was a heterogeneity of the RA cavity due to artifacts from the superior vena cava (VC) and unenhanced blood from the inferior VC. Pre-bolus administration increased the contrast ratio between RA myocardium and blood due to the improvement of blood CT density in the inferior VC (blood density 294 HU). The quality of RV CE was similar to 2nd group (blood density 264 HU, VM-RV 0,565).
Conclusion. The split-bolus and with pre-bolus CE protocols improve visualization of the RV, supporting the high-level enhancement of the left heart. The protocol with a pre-bolus is preferable for exact differentiation of the right atrial endocardial contour.
Ключевые слова
Об авторах
N. Yu. KashtanovaРоссия
Moscow, 27 Bolshaya Serpukhovskaya str
Е. V. Kondratyev
Россия
Moscow, 27 Bolshaya Serpukhovskaya str
G. G. Karmazanovsky
Россия
Moscow, 27 Bolshaya Serpukhovskaya str
Moscow, 1 Ostrovityanova str.
I. S. Gruzdev
Россия
Moscow, 27 Bolshaya Serpukhovskaya str
Е. А. Artyukhina
Россия
Moscow, 27 Bolshaya Serpukhovskaya str
М. V. Yashkov
Россия
Moscow, 27 Bolshaya Serpukhovskaya str
А. Sh. Revishvili
Россия
Moscow, 27 Bolshaya Serpukhovskaya str
Список литературы
1. Calkins H, Kuck KH, Cappato R, et al. Heart Rhythm Society Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints and research trial design. Heart Rhythm. 2012;9(4): 632-696. https://doi.org/10.1016/j.hrthm.2011.12.016.
2. Ramanathan C, Ghanem RN, Jia P, et al. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nature Medicine. 2004; 10: 422-428.
3. Revishvili AS, Kalinin VV, Sopov O, et al. First experience in surgical management of heart rhythm disorders with a non-invasive surface mapping diagnostic system «AMYCARD-01». Annaly aritmologii. 2011;1: 47-52. (In Russ.).
4. Rudy Y. Noninvasive ECG imaging (ECGI): Mapping the arrhythmic substrate of the human heart. International Journal of Cardiology. 2017;237: 13-14.
5. Revishvili AS, Wissner E, Lebedev et al. Validation of the mapping accuracy of a novel non-invasive epicardial and endocardialelectrophysiology system. Europace. 2015;17(8): 1282-1288. https://doi.org/10.1093/europace/euu339.
6. Artyukhina EA, Revishvili AS. Сomplex approach to treatment of the arrhythmias with non invasive and invasive mapping. Vysokotekhnologicheskaya medicina. 2017;3: 51-53. (In Russ.).
7. Yashkov MV. Use of russian non-invasive and invasive mapping systems for interventional treatment of ventricular arrhythmias. Translational Medicine. 2018;5(2): 22-29. (In Russ.). https://doi.org/10.18705/2311-4495-2018-5-2-22-29
8. Utsunomiya D, Awai K, Sakamoto T, et al. Cardiac 16-MDCT for anatomic and functional analysis: assessment of a biphasic contrast injection protocol. AJR Am J Roentgenol. 2006; 187(3): 638-44. https://doi.org/10.2214/ AJR.05.0612.
9. Mihl C, Maas M, Turek J, et al. Contrast media administration in coronary computed tomography angiography – a systematic review. Fortschr Röntgenstr. 2017;189: 312-325. https://doi.org/10.1055/s-0042-121609.
10. Cronin EM, Bogun FM, Maury P, et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias: Executive summary. Heart Rhythm. 2019;pii: S1547-5271(19)30236-X. https://doi.org/10.1016/j.hrthm.2019.03.014.
11. Johnson T, Nikolaou K, Wintersperger BJ, et al. ECG-gated 64-MDCT angiography in the differential diagnosis of acute chest pain. AJR Am J Roentgenol. 2007;188(1): 76-82. https://doi.org/10.2214/AJR.05.1153.
12. Kerl JM, Ravenel JG, Nguyen SA, et al. Right heart: split-bolus injection of diluted contrast medium for visualization at coronary CT angiography. Radiology. 2008:247(2): 356-64. https://doi.org/10.1148/radiol.2472070856.
13. Gopalan D. Right heart on multidetector CT. The British Journal of Radiology. 2011;84: 306-323. https://doi.org/10.1259/bjr/59278996.
14. Lu JG, Lv B, Chen XB, et al. What is the best contrast injection protocol for 64-row multi-detector cardiac computed tomography? Eur J Radiol. 2010;75: 159-65. https://doi.org/10.1016/j.ejrad.2009.04.035.
15. Haage P, Schmitz-Rode T, Hubner D, et al. Reduction of contrast material dose and artifacts by a saline flush using a double power injector in helical CT of the thorax. AJR Am J Roentgenol. 2000;174: 1049-1053.
16. Setty BN, Sahani DV, Ouellette-Piazzo K, et al. Comparison of enhancement, image quality, cost, and adverse reactions using 2 different contrast medium concentrations for routine chest CT on 16-slice MDCT. J Comput Assist Tomogr. 2006;30(5): 818-22. https://doi.org/10.1097/01.rct.0000229999.30897.3b.
17. Funabashi N, Suzuki K, Terao M, et al. New acquisition method to exclusively enhance the left side of the heart by a small amount of contrast material achieved by multislice computed tomography with 64 data acquisition system. Int J Cardiol. 2007;114: 265-269. https://doi.org/10.1016/j.ijcard.2005.11.066.
18. Cademartiri F, Mollet N, van der Lugt A, et al. Non-invasive 16-row multislice CT coronary angiography: usefulness of saline chaser. EurRadiol. 2004;14: 178-183. https://doi.org/10.1007/s00330-003-2188-x.
19. Dillman JR, Caoili EM, Cohan RH, et al. Comparison of urinary tract distension and opacification using single-bolus 3-Phase vs split-bolus 2-phase multidetector row CT urography. J Comput Assist Tomogr. 2007;31(5): 750-7. https://doi.org/10.1097/RCT.0b013e318033df36.
20. Kok M, Kietselaer BL, Mihl C, et al. Contrast enhancement of the right ventricle during coronary CT angiography - is it necessary? PLoS One. 2015;10(6): e0128625. https://doi.org/10.1371/journal.pone.0128625.
21. Wu X, Wang C, Zhang C, et al. Computed tomography for detecting left atrial thrombus: a meta-analysis. Arch Med Sci. 2012;8(6): 943-51. https://doi.org/10.5114/aoms.2012.32400.
22. Teunissen C, Habets J, Velthuis BK, et al. Double-contrast, single-phase computed tomography angiography for ruling out left atrial appendage thrombus prior to atrial fibrillation ablation. Int J Cardiovasc Imaging. 2017;33(1): 121-128. https://doi.org/10.1007/s10554-016-0973-2.
23. Romero J, Husain SA, Kelesidis I, et al. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: a metaanalysis. Circ: Cardiovasc Imaging. 2013;6: 185-94. https://doi.org/10.1161/CIRCIMAGING.112.000153.
24. Bilchick KC, Mealor A, Gonzalez J, et al. Effectiveness of integrating delayed computed tomography angiography imaging for left atrial appendage thrombus exclusion into the care of patients undergoing ablation of atrial fibrillation. Heart Rhythm. 2016;13: 12-19. https://doi.org/10.1016/j.hrthm.2015.09.002.
25. Hur J, Kim YJ, Lee HJ, et al. Cardioembolic stroke: dual-energycardiac CT for differentiation of left atrial appendage thrombus and circulatory stasis. Radiology. 2012;263(3): 688-695. https://doi.org/10.1148/radiol.12111691.
26. Hur J, Pak HN, Kim YJ, et al. Dual-enhancement cardiac computed tomography for assessing left atrial thrombus and pulmonary veins before radiofrequency catheter ablation for atrial fibrillation. Am J Cardiol. 2013;112(2): 238-44. https://doi.org/10.1016/j.amjcard.2013.03.018.
27. Staab W, Sohns C, Zwaka PA, et al. Split-bolus single-phase cardiac multidetector computed tomography for reliable detection of left atrial thrombus: comparison to transesophageal echocardiography. Rofo. 2014;186 (11): 1009-1015. https://doi.org/10.1055/s-0034-1366247.
28. Kashtanova NYu, Gruzdev IS, Kondrat’ev EV, et al. Cardiac multispiral computed tomography: optimization of examination’s protocol for non-invasive cardaic mapping before catheter ablation of atrial fibrrillation. Medical Visualization. 2018;(3):33-48. (In Russ.). https://doi.org/10.24835/1607-0763-2018-3-33-48.
Рецензия
Для цитирования:
Kashtanova N.Yu., Kondratyev Е.V., Karmazanovsky G.G., Gruzdev I.S., Artyukhina Е.А., Yashkov М.V., Revishvili А.Sh. The improvement of cardiac multispiral computed tomography protocol for planning interventional arrhythmia management. Вестник аритмологии. 2021;28:25-31. https://doi.org/10.35336/VA-2021-E-25-31
For citation:
Kashtanova N.Yu., Kondratyev E.V., Karmazanovsky G.G., Gruzdev I.S., Artyukhina E.A., Yashkov M.V., Revishvili A.Sh. The improvement of cardiac multispiral computed tomography protocol for planning interventional arrhythmia management. Journal of Arrhythmology. 2021;28:25-31. https://doi.org/10.35336/VA-2021-E-25-31