PULMONARY VEIN CRYOBALLOON ABLATION IN PATIENTS WITH THE COMMON TRUNK OF THE PULMONARY VEINS
https://doi.org/10.25760/VA-2019-95-47-52
Abstract
Objective: To assess the effi cacy and safety of pulmonary vein (PV) cryoballoon ablation (CBA) in patients with the common trunk of the pulmonary veins (PVCT).
Materials and methods: A retrospective analysis was performed on procedural data of the 596 primary PV CBA using the second-generation cryoballoon (CB) Arctic Front Advance (28мм, Medtronic). A direct LA angiography on high-frequency right ventricular pacing was performed for PV anatomy visualization. 49 patients with evaluated PVCTs were enrolled in the study. One-step and sequential ablation approaches with simultaneous recording of biophysical and electrophysiological parameters were used for PVCT isolation. During cryoablation in right PVs, a high-output (2000ms, 25mA) pacing of right phrenic nerve was performed by the electrode placed in superior vena cava and the amplitude of the diaphragm movement was monitored. In the case of impairment/loss of the diaphragm’s contraction ablation was immediately stopped.
Results: The typical drainage of PV was evaluated in 91,1% (543) patients. In 4 patients (0,67%) an additional right pulmonary vein was identifi ed. The prevalence of PVCT was 8,2% (49pts): left common trunk (LCT) was observed in 43 patients (87,7%), right common trunk (RCT) - in 6 patients (12,2%). Acute effi cacy of PVCT isolation was 95,9% (47/79): in LCT – 95,3%, in RCT - 100%. Thefeasibilityofone-stepantralisolationwas59,1% (n=29). With a median follow up of 12:(3-20) months the clinical success rate of the procedure was 69.4%. Comparative analysis showed no signifi cant difference between common trunk ablation approaches and clinical effi cacy(p=0,346).
Conclusion: Cryoballoon ablation is effi cient and safe for symptomatic AF patients’ treatment with PVCT. Simultaneous and sequential ablation tactics can be performed with comparable effi cacy.
About the Authors
K. V. DavtyanRussian Federation
A. H. Topchyan
Russian Federation
A. A. Kalemberg
Russian Federation
G. Yu. Simonyan
Russian Federation
References
1. Ревишвили, А.Ш., Рзаев, Ф.Г., Сопов, О.В. и соавт. Электрофизиологическая диагностика и результаты интервенционного лечения пациентов с ФП при наличии коллектора лёгочных вен // Вестник аритмологии. 2006. №. 45. P. 60-67.
2. Барсамян, С.Ж., Давтян, К.В., Александрова, Е.С. и соавт. Радиочастотная аблация коллектора левых лёгочных вен при атипичном расположении устья ушка левого предсердия // Вестник аритмологии. 2012. №. 68. P. 66-68.
3. Коженов А.Т., Азизов С.Н., Омаров М.Ш. и соавт. Успешная криобаллонная изоляция устьев лёгочных вен у пациентки с «situs inversus» и декстрокардией // Вестник аритмологии. 2018. № 93. P. 51-52.
4. Martins R.P., Hamon D., Césari O. et al. Safety and effi - cacy of a second-generation cryoballoon in the ablation of paroxysmal atrial fi brillation // Hear. Rhythm. 2014. Vol. 11, № 3. P. 386-393.
5. Aryana A., Bowers M.R., O’Neill P.G. Outcomes Of Cryoballoon Ablation Of Atrial Fibrillation: A Comprehensive Review. // J. Atr. Fibrillation. CardioFront, LLC, 2015. Vol. 8, № 2. P. 1231.
6. Verma A., Jiang C.Y., Betts T.R. et al. Approaches to Catheter Ablation for Persistent Atrial Fibrillation // N. Engl. J. Med. 2015. Vol. 372, № 19. P. 1812-1822.
7. Velagić V.A., Mugnai C, Hünük G et al. Learning curve using the second-generation cryoballoon ablation // J. Cardiovasc. Med. 2017. Vol. 18, № 7. P. 518-527.
8. Marom, Edith M., Herndon J.E., KimY.H. et al. Variations in Pulmonary Venous Drainage to the Left Atrium: Implications for Radiofrequency Ablation // Radiology. 2004. Vol. 230, № 3. P. 824-829.
9. Kato R., Lickfett L., Meininger G. et al. Pulmonary Vein Anatomy in Patients Undergoing Catheter Ablation of Atrial Fibrillation: Lessons Learned by Use of Magnetic Resonance Imaging // Circulation. 2003. Vol. 107, № 15. P. 2004-2010.
10. Kaseno K,Tada H, Koyama K et al. Prevalence and Characterization of Pulmonary Vein Variants in Patients With Atrial Fibrillation Determined Using 3-Dimensional Computed Tomography // Am. J. Cardiol. 2008. Vol. 101, № 11. P. 1638-1642.
11. Knecht S., Kühne M., Altmann D. et al. Anatomical predictors for acute and mid-term success of cryoballoon ablation of atrial fi brillation using the 28 mm balloon // J. Cardiovasc. Electrophysiol. 2013. Vol. 24, № 2. P. 132-138.
12. Khoueiry Z., Albenque J.-P., Providencia R. et al. Outcomes after cryoablation vs. radiofrequency in patients with paroxysmal atrial fi brillation: impact of pulmonary veins anatomy // Europace. Oxford University Press, 2016. Vol. 18, № 9. P. 1343-1351.
13. Ciconte G., de Asmundis C., Sieira C. et al. Single 3-Minute versus Double 4-Minute Freeze Strategy for Second-Generation Cryoballoon Ablation: A Single-Center Experience // J. Cardiovasc. Electrophysiol. 2016. Vol. 27, № 7. P. 796-803.
14. Chun K.R., Stich M., Fürnkranz A. et al. Individualized cryoballoon energy pulmonary vein isolation guided by realtime pulmonary vein recordings, the randomized ICE-T trial // Hear. Rhythm. 2017. Vol. 14, № 4. P. 495-500.
15. Lin W.-D, Fang X.-H, Xue Yu-M. et al. New individualized strategy instructs cryoballoon energy ablation. // J. Thorac. Dis. AME Publications, 2018. Vol. 10, № 1. P. 83-84.
16. Heeger C.-H., Tscholl V., Wissner E. et al. Acute effi - cacy, safety, and long-term clinical outcomes using the second-generation cryoballoon for pulmonary vein isolation in patients with a left common pulmonary vein: A multicenter study // Hear. Rhythm. 2017. Vol. 14, № 8. P. 1111-1118.
17. Tsyganov A., Petru J., Skoda J. Anatomical predictors for successful pulmonary vein isolation using balloonbased technologies in atrial fi brillation // J. Interv. Card. Electrophysiol. 2015. Vol. 44, № 3. P. 265-271.
18. Huang S.W., Jin Q., Zhang N.et al. Impact of Pulmonary Vein Anatomy on Long-term Outcome of Cryoballoon Ablation for Atrial Fibrillation // Curr. Med. Sci. Huazhong University of Science and Technology, 2018. Vol. 38, № 2. P. 259-267.
19. Chichkova T.Yu., Mamchur S. E., Kokov A. N. et al. Cryoballoon ablation for atrial fi brillation in different anatomy of pulmonary veins // Russ. J. Cardiol. 2017. Vol. 0, № 7. P. 99-104.
20. Schmidt M., Dorwarth U., Straube F.et al. Cryoballoon in AF ablation: impact of PV ovality on AF recurrence. // Int. J. Cardiol. Elsevier, 2013. Vol. 167, № 1. P. 114-120.
21. Ahmed J., Sohal S., Malchano Z.J.et al. Three-Dimensional Analysis of Pulmonary Venous Ostial and Antral Anatomy: Implications for Balloon Catheter-Based Pulmonary Vein Isolation // J. Cardiovasc. Electrophysiol. 2006. Vol. 17, № 3. P. 251-255.
Review
For citations:
Davtyan K.V., Topchyan A.H., Kalemberg A.A., Simonyan G.Yu. PULMONARY VEIN CRYOBALLOON ABLATION IN PATIENTS WITH THE COMMON TRUNK OF THE PULMONARY VEINS. Journal of Arrhythmology. 2019;26(1):47-52. (In Russ.) https://doi.org/10.25760/VA-2019-95-47-52