REMOTE MONITORING FOR EARLY DIAGNOSTICS OF PATIENT’S STATE CHANGES WITH HOME MONITORING TECHNOLOGY
https://doi.org/10.35336/VA-2019-2-5-13
Abstract
Aims. Analysis of the prevalence of clinical events and of the trends of the physiologically significant parameters in patients with cardiac implantable electronic devices (CIEDs) with the remote monitoring options.
Methods. In 9 clinical centers of the Russian Federation and 2 clinical centers of the Republic of Kazakhstan, 126 patients with an ICD or a pacemaker provided with the Home Monitoring technology (BIOTRONIK, Berlin, Germany) have been enrolled into the ReHoming (Registry Home Monitoring) clinical study. Based on the daily data transmission, all alarm alerts and all the Home Monitoring options changes have been registered with dated alert content and undertaken measures.
Results. The study patients, followed up at least for one year, demonstrated 42 adverse events (AE), 26 of which were serious AE (SAE) and 3 SAE were defined as device related (SADE). ICD patients (n=90) had statistically significantly higher SAE prevalence with attendant coronary artery disease (CAD) (p=0.0249). Patients with CRT/D compared to patients with dual-chamber or single-chamber ICD had less SAE rate (р=0.046). Downloads of Home Monitoring parameters for retrospective mathematical analysis were available for 60 ICD patients, 47 of which had episodes of ventricular tachycardia (VT), ventricular fibrillation (VF) and/or atrial tachyarrhythmia (AT). Machine learning analysis of the trends of the physiologically meaningful parameters revealed correlation of the changes with arrhythmia episodes, the random forest method and the gradient boosting method giving the results strongly exceeding a random guess.
Conclusion. Home Monitoring of CIED patients enables evaluation of clinical advantages of different device types application, also in regard to prevention of adverse events and possible iatrogenic effects of electrotherapy of the heart. The study results demonstrate a possibility to develop a predictor of arrhythmia episodes, based on daily transmission of trends of physiologically meaningful Home Monitoring parameters.
About the Authors
A. Sh. RevishviliRussian Federation
on behalf of the ReHoming study investigators
N. N. Lomidze
Russian Federation
on behalf of the ReHoming study investigators
A. S. Abdrakhmanov
Kazakhstan
on behalf of the ReHoming study investigators
A. A. Nechepurenko
Russian Federation
on behalf of the ReHoming study investigators
Astrakhan
E. A. Ivanitsky
Russian Federation
on behalf of the ReHoming study investigators
Krasnoyarsk
O. V. Belyaev
Russian Federation
on behalf of the ReHoming study investigators
S. V. Popov
Russian Federation
on behalf of the ReHoming study investigators
D. S. Lebedev
Russian Federation
on behalf of the ReHoming study investigators
V. K. Lebedeva
Russian Federation
on behalf of the ReHoming study investigators
S. P. Mikhailov
Russian Federation
on behalf of the ReHoming study investigators
E. A. Pokushalov
Russian Federation
on behalf of the ReHoming study investigators
S. E. Mamchur
Russian Federation
on behalf of the ReHoming study investigators
P. L. Shugaev
Russian Federation
on behalf of the ReHoming study investigators
R. R. Rekvava
Kazakhstan
on behalf of the ReHoming study investigators
S. N. Vasilyev
Russian Federation
on behalf of the ReHoming study investigators
V. V. Kuptsov
Russian Federation
on behalf of the ReHoming study investigators
V. I. Berdyshev
Russian Federation
on behalf of the ReHoming study investigators
R. Sh. Sungatov
Russian Federation
on behalf of the ReHoming study investigators
I. Sh. Khassanov
Germany
Berlin
Max Schaldach-Stiftungsprofessur für Biomedizinische Technik
Erlangen
on behalf of the ReHoming study investigators
References
1. Hutten H, Schaldach M. Telecardiology Optimizing the Diagnostic and Therapeutic Efficacy of the Next Implant Generation. Progress in Biomedical Research 1998; 3 (1): 1-4.
2. Dubner S, Auricchio A, Steinberg JS, et al. ISHNE/ EHRA expert consensus on remote monitoring of cardiovascular implantable electronic devices (CIEDs). Europace 2012; 14: 278-293.
3. Slotwiner D, Varma N, Akar JG, et al. HRS Expert Consensus Statement on remote interrogation and monitoring for cardiovascular implantable electronic devices. Heart Rhythm 2015; 12 (7): e69-e100.
4. Varma N, Epstein AE, Irimpen A, Schweikert R, Love C, for the TRUST Investigators. Efficacy and Safety of Automatic Remote Monitoring for Implantable Cardioverter-Defibrillator Follow-Up: the Lumos-T Safely Reduces Routine Office Device Follow-up (TRUST) Trial. Circulation 2010; 122 (4): 325-332.
5. Ricci RP, Morichelli L, Santini M. Home Monitoring Remote Control of Pacemaker and Implantable Cardioverter Defibrillator Patients in Clinical Practice: Impact on Medical Management and Health-Care Resource Utilization. Europace 2008; 10 (2): 164-170.
6. Mabo P, Victor F, Bazin P, Ahres S, Babuty D, Da Costa A, Binet D, Daubert J-C, on behalf of the COMPAS trial investigators. A randomized trial of long-term remote monitoring of pacemaker recipients (The COMPAS trial). Eur Heart J (2011) doi: 10.1093/eurheartj/ehr419. First published online: November 29, 2011.
7. Varma N Epstein AE, Irimpen A, Gibson L, Love C. Efficacy of calendar based ICD checks: conventional follow up compared to remote monitoring in the TRUST trial. European Heart Journal 2009; 30 (abstract supplement): 278.
8. Ricci RP, Morichelli L, Quarta L, Sassi A, Porfili A, Laudadio MT, Gargaro A, Santini M. Europace 2010; 12 (5): 674-679.
9. Halimi F, Clémenty J, Attuel P, Dessenne X, Amara W; OEDIPE trial Investigators. Optimized post-operative surveillance of permanent pacemakers by home monitoring: the OEDIPE trial. Europace 2008; 10: 1392-1399.
10. Vardas PE, Auricchio A, Blanc JJ, et al. European Society of Cardiology; European Heart Rhythm Association. Guidelines for cardiac pacing and cardiac resynchronization therapy: The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. Eur Heart J 2007; 28: 2256-2295.
11. Heidbüchel H, Lioen P, Foulon S, Huybrechts W, Ector J, Willems R, Ector H. Potential role of remote monitoring for scheduled and unscheduled evaluations of patients with an implantable defibrillator. Europace 2008; 10: 351-357.
12. Kacet S, Guédon-Moreau L, Hermida J-S, Aliot E, Boursier M, Bizeau O, Klug D, Kouakam C on behalf of the ECOST trial Investigators. Safety and effectiveness of implantable cardioverter defibrillator follow-up using remote monitoring: ECOST study. European Society of Cardiology, Paris, 29 August 2011 - http://www.escardio. org/congresses/esc-2011/congress-reports/Pages/707-2- ECOST.aspx
13. Hindricks G, Taborsky M, Glikson M et al. Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial. The Lancet 2014; 384 (9943): 583-590.
14. Ревишвили А.Ш., Ломидзе Н.Н., Сунгатов Р.Ш., Хасанов И.Ш. Удаленная диагностика и интеграция медицинских данных для повышения эффективности электрокардиотерапии. Вестник аритмологии 2016; №85: с. 5-18.
15. Helterbook. Свидетельство о государственной регистрации программы для ЭВМ № 2013661583, 11 декабря 2013 года.
16. Sack S, Wende ChM, Nägele H, Katz A, Bauer WR, Barr CS, Malinowski K, Schwacke H, Leyva F, Proff J, Berdyshev S, Paul V. Potential value of automated daily screening of cardiac resynchronization therapy defibrillator diagnostics for prediction of major cardiovascular events: Results from Home-CARE (Home Monitoring in Cardiac Resynchronization Therapy) study. European Journal of Heart Failure 2011; 13: 1019-1027.
17. Refaeilzadeh P, Tang L, Liu H. (2009) Cross-Validation. In: Liu L, Özsu MT (eds) Encyclopedia of Database Systems. Springer, Boston, MA.
18. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993; 39: 561-577.
19. Ho TK. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998; 20 (8): 832-844.
20. Cortes C, Vapnik V. Support-Vector Networks. Machine Learning 1995; 20: 273-297.
21. Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician 1992; 46 (3): 175–185.
22. Айвазян С.А., Бухштабер В.М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: классификация и снижение размерности. - М.: Финансы и статистика, 1989.
23. Friedman J. Greedy Function Approximation: A Gradient Boosting Machine. - IMS 1999 Reitz Lecture.
Review
For citations:
Revishvili A.Sh., Lomidze N.N., Abdrakhmanov A.S., Nechepurenko A.A., Ivanitsky E.A., Belyaev O.V., Popov S.V., Lebedev D.S., Lebedeva V.K., Mikhailov S.P., Pokushalov E.A., Mamchur S.E., Shugaev P.L., Rekvava R.R., Vasilyev S.N., Kuptsov V.V., Berdyshev V.I., Sungatov R.Sh., Khassanov I.Sh. REMOTE MONITORING FOR EARLY DIAGNOSTICS OF PATIENT’S STATE CHANGES WITH HOME MONITORING TECHNOLOGY. Journal of Arrhythmology. 2019;26(2):5-13. (In Russ.) https://doi.org/10.35336/VA-2019-2-5-13