Preview

Journal of Arrhythmology

Advanced search

Non-fluoroscopic ablation of typical atrial flutter: effectiveness and safety

https://doi.org/10.35336/VA-1558

Abstract

Aim. To evaluate the effectiveness and safety of catheter treatment of typical atrial flutter (AFl) using exclusively intracardiac echocardiography (ICE) compared to the fluoroscopic method.

Material and methods. There were 176 patients with typical AFl (88 patients in each group). The study group consisted of patients who underwent radiofrequency ablation (RFA) with intracardiac ultrasound visualization only (ZF - Zero Fluoro). The comparison group included patients who underwent RFA of the AFl using minimal fluoroscopy time and ICE (MF - Minimal Fluoro). The follow-up period was 12 months.

Results. Intraoperative success rate was 100% in both groups. The absence of recurrence of AFl during the follow-up period was comparable (94.3% vs. 96.6%, p=0.4703). No acute or delayed complications were reported. Fluoroscopy was used in none patient who underwent the procedure under intracardiac ultrasound guidance (p < 0.001). Surgery time and overall RF-ablation time did not differ statistically (69.4 min vs. 63.9 min, p=0.1030; 9.1 min vs. 8.3 min, p=0.1606, respectively) in the MF- and ZF-group.

Conclusion. Catheter RFA of a typical AFl with ICE-visualization is feasible without the use of fluoroscopy, with comparable efficiency and safety results.

About the Authors

M. A. Podianov
FSBI «NMRC of cardiology named after academician E.I.Chazov» of the MH RF
Russian Federation

Podianov Maksim

Moscow, 15а, 3rd-Cherepkovskaya str.



O. V. Sapelnikov
FSBI «NMRC of cardiology named after academician E.I.Chazov» of the MH RF
Russian Federation

Moscow, 15а, 3rd-Cherepkovskaya str.



D. I. Cherkashin
FSBI «NMRC of cardiology named after academician E.I.Chazov» of the MH RF
Russian Federation

Moscow, 15а, 3rd-Cherepkovskaya str.



D. F. Ardus
FSBI «NMRC of cardiology named after academician E.I.Chazov» of the MH RF
Russian Federation

Moscow, 15а, 3rd-Cherepkovskaya str.



T. M. Uskach
FSBI «NMRC of cardiology named after academician E.I.Chazov» of the MH RF
Russian Federation

Moscow, 15а, 3rd-Cherepkovskaya str.



A. A. Kulikov
FSBI «NMRC of cardiology named after academician E.I.Chazov» of the MH RF
Russian Federation

Moscow, 15а, 3rd-Cherepkovskaya str.



A. V. Vereshchagina
FSBI «NMRC of cardiology named after academician E.I.Chazov» of the MH RF
Russian Federation

Moscow, 15а, 3rd-Cherepkovskaya str.



I. R. Grishin
FSBI «NMRC of cardiology named after academician E.I.Chazov» of the MH RF
Russian Federation

Moscow, 15а, 3rd-Cherepkovskaya str.



K. B. Timizheva
FSBI «NMRC of cardiology named after academician E.I.Chazov» of the MH RF
Russian Federation

Moscow, 15а, 3rd-Cherepkovskaya str.



G. K. Ramazanov
FSBI «NMRC of cardiology named after academician E.I.Chazov» of the MH RF
Russian Federation

Moscow, 15а, 3rd-Cherepkovskaya str.



M. F. Demurchev
FSBI «NMRC of cardiology named after academician E.I.Chazov» of the MH RF
Russian Federation

Moscow, 15а, 3rd-Cherepkovskaya str.



A. S. Omelianenko
FSAEI «Kazan (Volga Region) Federal University»
Russian Federation

Kazan, 18 Kremlyovskaya str.



I. B. Lukin
FSBEI HE «Tver State Medical University» of the MH RF
Russian Federation

Tver, 4 Sovetskaya str.



A. A. Shiryaev
FSBI «NMRC of cardiology named after academician E.I.Chazov» of the MH RF
Russian Federation

Moscow, 15а, 3rd-Cherepkovskaya str.



References

1. Granada J, Uribe W, Chyou PH, et al. Incidence and predictors of atrial flutter in the general population. J Am Coll Cardiol. 2000;36(7): 2242-2246. https://doi.org/10.1016/s0735-1097(00)00982-7.

2. Diamant MJ, Andrade JG, Virani SA, et al. Heart failure and atrial flutter: a systematic review of current knowledge and practices. ESC Heart Fail. 2021;8(6): 4484-4496.

3. https://doi.org/10.1002/ehf2.13526.

4. Vadmann H, Nielsen PB, Hjortshøj SP, et al. Atrial flutter and thromboembolic risk: a systematic review. Heart. 2015;101(18): 1446-1455. https://doi.org/10.1136/heartjnl-2015-307550

5. Rahman F, Wang N, Yin X, et al. Atrial flutter: Clinical risk factors and adverse outcomes in the Framingham Heart Study. Heart Rhythm. 2016;13(1): 233-240. https://doi.org/10.1016/j.hrthm.2015.07.031.

6. Natale A, Newby KH, Pisanó E, et al. Prospective randomized comparison of antiarrhythmic therapy versus first-line radiofrequency ablation in patients with atrial flutter. J Am Coll Cardiol. 2000;35(7): 1898-1904. https://doi.org/10.1016/s0735-1097(00)00635-5.

7. Roşu R, Mureşan L, Andronache M, et al. The role of radiofrequency ablation as a first line therapy in the treatment of atrial flutter. Rom J Intern Med. 2010;48(3): 249-253.

8. Arduz D.F. The Effect of Catheter Ablation of Atrial Fibrillation and Flutter on the Clinical Course of Chronic Heart Failure: PhD Thesis: 3.1.20, 3.1.15. - Moscow, 2023. - 133 p. (In Russ.)

9. Pérez FJ, Schubert CM, Parvez B, et al. Long-term outcomes after catheter ablation of cavo-tricuspid isthmus dependent atrial flutter: a meta-analysis. Circ Arrhythm Electrophysiol. 2009;2(4): 393-401. https://doi.org/10.1161/CIRCEP.109.871665.

10. Maglia G, Pentimalli F, Verlato R, et al. Ablation of CTI-dependent flutter using different ablation technologies: acute and long-term outcome from the LEONARDO study. J Interv Card Electrophysiol. 2023;66(7): 1749-1757. doi:10.1007/s10840-023-01519-7. https://doi.org/10.1007/s10840-023-01519-7.

11. Herman D, Osmancik P, Zdarska J, Prochazkova R. Routine use of intracardiac echocardiography for atrial flutter ablation is associated with reduced fluoroscopy time, but not with a reduction of radiofrequency energy delivery time. J Atr Fibrillation. 2017;10(2): 1553. Published 2017 Aug 31. https://doi.org/10.4022/jafib.1553.

12. Bencsik G, Pap R, Makai A, et al. Randomized trial of intracardiac echocardiography during cavotricuspid isthmus ablation. J Cardiovasc Electrophysiol. 2012;23(9): 996-1000.

13. https://doi.org/10.1111/j.1540-8167.2012.02331.x.

14. Sapelnikov OV, Partigulova AS, Saidova MA et al. The role of intracardiac echocardiography in clinical practice. Kardiologiia. 2015;55(1): 64-69. (In Russ.). https:// doi.org/10.18565/cardio.2015.1.64-69.

15. Sapelnikov OV, Ardus DF, Kostin VS et al. Nonfluoroscopic catheter ablation in patients with atrial fibrillation. Russian Journal of Cardiology. 2020;25(12): 3928. (In Russ.). https://doi.org/10.15829/1560-4071-2020-3928.

16. Kostin VS, Sapelnikov OV, Uskach TM, et al. Non-fluoroscopic approach to cryoballoon ablation for atrial fibrillation. (1 year follow-up results). Russian Cardiology Bulletin. 2021;16(4): 49 57. (In Russ.). https://doi.org/10.17116/Cardiobulletin20211604149.

17. Huseynli EG, Sapelnikov OV, Amanatova VA, et al. Efficacy and Safety of Nonfluoroscopic Approach During Catheter Ablation of Ventricular Tachycardias. Kardiologiia. 2023;63(3): 36-45. (In Russ.). https://doi.org/10.18087/cardio.2023.3.n2243.

18. Podianov MA, Sapelnikov OV, Cherkashin DI, et al. Non-fluoroscopic ablation of supraventricular tachycardia — results of a new approach. Russian Cardiology Bulletin. 2024;19(4): 80 86. (In Russ.). https://doi.org/10.17116/Cardiobulletin20241904180.

19. Goya M, Frame D, Gache L, et al. The use of intracardiac echocardiography catheters in endocardial ablation of cardiac arrhythmia: Meta-analysis of efficiency, effectiveness, and safety outcomes. J Cardiovasc Electrophysiol. 2020;31(3): 664-673. https://doi.org/10.1111/jce.14367.

20. Chu E, Fitzpatrick AP, Chin MC, et al. Radiofrequency catheter ablation guided by intracardiac echocardiography. Circulation. 1994;89(3): 1301-1305. https://doi.org/10.1161/01.cir.89.3.1301.

21. Morton JB, Sanders P, Davidson NC, et al. Phased-array intracardiac echocardiography for defining cavotricuspid isthmus anatomy during radiofrequency ablation of typical atrial flutter. J Cardiovasc Electrophysiol. 2003;14(6): 591-597. https://doi.org/10.1046/j.1540-8167.2003.02152.x.

22. Luani B, Basho M, Ismail A, et al. Catheter navigation by intracardiac echocardiography enables zero-fluoroscopy linear lesion formation and bidirectional cavotricuspid isthmus block in patients with typical atrial flutter. Cardiovasc Ultrasound. 2023;21(1): 13. https://doi.org/10.1186/s12947-023-00312-w.

23. Katritsis DG, Chokesuwattanaskul R, Zografos T, et al. A simplified differential pacing technique for the evaluation of bidirectional cavo-tricuspid isthmus block during ablation of typical atrial flutter. J Interv Card Electrophysiol. 2022;63(1): 109-114. https://doi.org/10.1007/s10840-020-00935-3.

24. Turcsan M, Janosi KF, Debreceni D, et al. Intracardiac Echocardiography Guidance Improves Procedural Outcomes in Patients Undergoing Cavotricuspidal Isthmus Ablation for Typical Atrial Flutter. J Clin Med. 2023;12(19): 6277. https://doi.org/10.3390/jcm12196277.

25. Hindricks G, Willems S, Kautzner J, et al. Effect of electroanatomically guided versus conventional catheter ablation of typical atrial flutter on the fluoroscopy time and resource use: a prospective randomized multicenter study. J Cardiovasc Electrophysiol. 2009;20(7): 734-740. https://doi.org/10.1111/j.1540-8167.2009.01439.x.

26. Debreceni D, Janosi KF, Turcsan M, et al. Feasibility and safety of cavotricuspid isthmus ablation using exclusive intracardiac echocardiography guidance: a proofof-concept, observational trial. Front Cardiovasc Med. 2023;10: 1244137. Published 2023 Oct 12. https://doi.org/10.3389/fcvm.2023.1244137.

27. Álvarez M, Tercedor L, Herrera N, et al. Cavotricuspid isthmus catheter ablation without the use of fluoroscopy as a first-line treatment. J Cardiovasc Electrophysiol. 2011;22(6): 656-662. https://doi.org/10.1111/j.1540-8167.2010.01962.x.

28. Fernández-Gómez JM, Moriña-Vázquez P, Morales Edel R, et al. Exclusion of fluoroscopy use in catheter ablation procedures: six years of experience at a single center. J Cardiovasc Electrophysiol. 2014;25(6): 638-644. https://doi.org/10.1111/jce.12385.

29. Scaglione M, Caponi D, Di Donna P, et al. Typical atrial flutter ablation outcome: correlation with isthmus anatomy using intracardiac echo 3D reconstruction. Europace. 2004;6(5): 407-417. https://doi.org/10.1016/j.eupc.2004.05.008.

30. Shimizu Y, Yoshitani K, Murotani K, et al. The deeper the pouch is, the longer the radiofrequency duration and higher the radiofrequency energy needed-Cavotricuspid isthmus ablation using intracardiac echocardiography. J Arrhythm. 2018;34(4): 410-417. Published 2018 Jun 4. https://doi.org/10.1002/joa3.12075.

31. Rajdev A, Garan H, Biviano A. Arrhythmias in pulmonary arterial hypertension. Prog Cardiovasc Dis. 2012;55(2): 180-186. https://doi.org/10.1016/j.pcad.2012.06.002.

32. Zhang A, Ding L, Zhang H, et al. Radiofrequency catheter ablation for pulmonary hypertension patients with atrial flutter. ESC Heart Fail. 2024;11(2): 883-892. https://doi.org/10.1002/ehf2.14659.


Review

For citations:


Podianov M.A., Sapelnikov O.V., Cherkashin D.I., Ardus D.F., Uskach T.M., Kulikov A.A., Vereshchagina A.V., Grishin I.R., Timizheva K.B., Ramazanov G.K., Demurchev M.F., Omelianenko A.S., Lukin I.B., Shiryaev A.A. Non-fluoroscopic ablation of typical atrial flutter: effectiveness and safety. Journal of Arrhythmology. 2025;32(4):37-44. https://doi.org/10.35336/VA-1558

Views: 46

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8641 (Print)
ISSN 2658-7327 (Online)